论文标题
在有限温度下的图形,局部Zeta功能,对数库仑气体和相变
Graphs, local zeta functions, Log-Coulomb Gases, and phase transitions at finite temperature
论文作者
论文摘要
我们研究网络上的日志气(有限的,简单的图),该网络限制在本地字段的有界子集中(即r,c,q_ {p} p-adic数字的字段)。在这种气体中,仅当粒子的位点通过网络的边缘连接时,才会发生对数库仑的相互作用。这些气体的分区功能被证明是附加到网络上的特定类别的多元局部Zeta函数,并且由限制电位确定的正测试功能。局部ZETA函数理论的方法和结果使我们能够确定该分区函数在参数\ b {eta}(绝对温度的倒数)中允许meromormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormorormormormorormormorormormorormorormorormormormorormorormorormormorormorormorormorormorormorormorormormorormorormorormorormorormorormorormorormorormorormorormorormorormormorormorormorormormorormormormormormormormormormormormormormormotovilen力。我们给出了电荷分布和限制电位的条件,以使分区函数的Meromorormormormormormormormormormormormor形,具有正值\ B {eta} _ {UV},这意味着在有限温度下存在相变的存在。在P-ADIC字段的情况下,分区函数的Meromorphic连续性是变量P^{ - \ B {eta}}中的有理函数。我们给出了用于计算此类合理函数的算法。因此,我们可以将P-ADIC对数库仑气体视为可溶解的模型。我们希望所有这些用于不同本地领域的模型具有共同的特性,并且可以通过统一理论来描述它们。
We study a log-gas on a network (a finite, simple graph) confined in a bounded subset of a local field (i.e. R, C, Q_{p} the field of p-adic numbers). In this gas, a log-Coulomb interaction between two charged particles occurs only when the sites of the particles are connected by an edge of the network. The partition functions of such gases turn out to be a particular class of multivariate local zeta functions attached to the network and a positive test function which is determined by the confining potential. The methods and results of the theory of local zeta functions allow us to establish that the partition functions admit meromorphic continuations in the parameter \b{eta} (the inverse of the absolute temperature). We give conditions on the charge distributions and the confining potential such that the meromorphic continuations of the partition functions have a pole at a positive value \b{eta}_{UV}, which implies the existence of phase transitions at finite temperature. In the case of p-adic fields the meromorphic continuations of the partition functions are rational functions in the variable p^{-\b{eta}}. We give an algorithm for computing such rational functions. For this reason, we can consider the p-adic log-Coulomb gases as exact solvable models. We expect that all these models for different local fields share common properties, and that they can be described by a uniform theory.