论文标题

用RGBD基金感应和复发性神经网络有效地校准电缆驱动的手术机器人

Efficiently Calibrating Cable-Driven Surgical Robots with RGBD Fiducial Sensing and Recurrent Neural Networks

论文作者

Hwang, Minho, Thananjeyan, Brijen, Paradis, Samuel, Seita, Daniel, Ichnowski, Jeffrey, Fer, Danyal, Low, Thomas, Goldberg, Ken

论文摘要

使用电缆驱动的机器人手术助手(RSA)(例如Intuitive Surgical的Da Vinci Research套件(DVRK))的手术子任务自动化,这是由于与电缆相关效应(例如电缆伸展和滞后效应)控制的不重点,因此具有挑战性。我们提出了一种新颖的方法,通过在使用RGBD感应的手臂和最终效法器上放置3D打印的基准坐标框架来有效地校准此类机器人。为了测量关节之间的耦合和历史依赖性效应,我们分析了来自采样轨迹的数据,并考虑13种建模方法。这些模型包括线性回归和LSTM复发性神经网络,每个神经网络具有不同的时间窗口长度,以提供补偿性反馈。通过提出的方法,1800个样本的数据收集需要31分钟,模型训练需要1分钟以下。对参考轨迹的测试集的结果表明,受过训练的模型可以将物理机器人的平均跟踪误差从2.96 mm减少到0.65 mm。 FLS PEG转移外科医生训练任务的开环轨迹执行的结果表明,最佳模型将成功率从39.4%提高到96.7%,从而产生与专家外科居民相当的绩效。补充材料,包括代码和3D打印模型,可在https://sites.google.com/berkeley.edu/surgical-calibration上获得

Automation of surgical subtasks using cable-driven robotic surgical assistants (RSAs) such as Intuitive Surgical's da Vinci Research Kit (dVRK) is challenging due to imprecision in control from cable-related effects such as cable stretching and hysteresis. We propose a novel approach to efficiently calibrate such robots by placing a 3D printed fiducial coordinate frames on the arm and end-effector that is tracked using RGBD sensing. To measure the coupling and history-dependent effects between joints, we analyze data from sampled trajectories and consider 13 approaches to modeling. These models include linear regression and LSTM recurrent neural networks, each with varying temporal window length to provide compensatory feedback. With the proposed method, data collection of 1800 samples takes 31 minutes and model training takes under 1 minute. Results on a test set of reference trajectories suggest that the trained model can reduce the mean tracking error of the physical robot from 2.96 mm to 0.65 mm. Results on the execution of open-loop trajectories of the FLS peg transfer surgeon training task suggest that the best model increases success rate from 39.4 % to 96.7 %, producing performance comparable to that of an expert surgical resident. Supplementary materials, including code and 3D-printable models, are available at https://sites.google.com/berkeley.edu/surgical-calibration

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源