论文标题

Tiles-2018,医院工作人员的纵向生理和行为数据集

TILES-2018, a longitudinal physiologic and behavioral data set of hospital workers

论文作者

Mundnich, Karel, Booth, Brandon M., L'Hommedieu, Michelle, Feng, Tiantian, Girault, Benjamin, L'Hommedieu, Justin, Wildman, Mackenzie, Skaaden, Sophia, Nadarajan, Amrutha, Villatte, Jennifer L., Falk, Tiago H., Lerman, Kristina, Ferrara, Emilio, Narayanan, Shrikanth

论文摘要

我们提出了一种新型的纵向多模式,从医院工作场所中的直接临床提供者收集的生理和行为数据。我们设计了这项研究是为了调查现成的可穿戴和环境传感器的使用,以了解个人特定的结构,例如工作绩效,人际关系互动以及随着时间的推移在自然日常工作环境中的医院工作人员的福祉。我们通过蓝牙数据中心,可穿戴的传感器(包括腕带,生物特征跟踪服装,智能手机和音频功能录像机),从$ n = 212 $参与者那里收集了行为和生理数据,以及一系列的调查,以评估人格特质,行为状态,工作绩效和良好的时间和良好的时间。除了默认使用数据集外,我们还设想了一些新型的研究机会和潜在应用,包括多模式和多任务行为建模,通过生物识别技术进行身份验证以及隐私感和隐私保护机器学习。

We present a novel longitudinal multimodal corpus of physiological and behavioral data collected from direct clinical providers in a hospital workplace. We designed the study to investigate the use of off-the-shelf wearable and environmental sensors to understand individual-specific constructs such as job performance, interpersonal interaction, and well-being of hospital workers over time in their natural day-to-day job settings. We collected behavioral and physiological data from $n = 212$ participants through Internet-of-Things Bluetooth data hubs, wearable sensors (including a wristband, a biometrics-tracking garment, a smartphone, and an audio-feature recorder), together with a battery of surveys to assess personality traits, behavioral states, job performance, and well-being over time. Besides the default use of the data set, we envision several novel research opportunities and potential applications, including multi-modal and multi-task behavioral modeling, authentication through biometrics, and privacy-aware and privacy-preserving machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源