论文标题
建模类似石墨烯的BC $ _6 $ N材料的电子,机械,光学和热性能:突出的BN键的作用
Modeling electronic, mechanical, optical and thermal properties of graphene-like BC$_6$N materials: Role of prominent BN-bonds
论文作者
论文摘要
我们用BC $ _6 $ n化学计量模拟单层石墨烯样材料,其中B和N原子之间的键在其物理和化学特性中起着重要作用。基于BN债券发现了两种类型的BC $ _6 $ n:在BN债券的存在下,出现了均匀的$π$ bbonds,表明出现了芳香的结构,并且出现了很大的直接带盖,而在没有BN债券的情况下,在不存在抗芳香族结构的情况下,具有$π$ -BONDS的反销售结构。与没有BN键的结构相比,应力 - 应变曲线显示出具有BN键的结构的高弹性模量和拉伸强度。自洽的场计算表明,由于B和N原子之间的强大结合能,而带有BN键的BC $ _6 $ N比没有BN键的结构在能量上更稳定,而其声子分散剂显示BC $ _6 $ N,没有BN键,没有BN键具有更大的动态稳定性。此外,所有的BC $ _6 $ N结构都认为,电磁辐射的吸收量很大,并且在可见范围内与单层平行的极化相平行。吸收的细节更细节取决于层的实际结构。在BC $ _6 $ N系统中,由热载体引起的较高的电子热导率和特定的热量 - 辅助电荷传输。这为基于石墨烯的材料设备的隆仪应用打开了可能的优化。
We model monolayer graphene-like materials with BC$_6$N stoichiometry where the bonding between the B and the N atoms plays an important role for their physical and chemical properties. Two types of BC$_6$N are found based on the BN bonds: In the presence of BN bonds, an even number of $π$-bonds emerges indicating an aromatic structure and a large direct bandgap appears, while in the absence of BN bonds, an anti-aromatic structure with an odd-number of $π$-bonds is found resulting a direct small bandgap. The stress-strain curves shows high elastic moduli and tensile strength of the structures with BN-bonds, compared to structures without BN-bonds. Self-consistent field calculations demonstrate that BC$_6$N with BN-bonds is energetically more stable than structures without BN-bonds due to a strong binding energy between the B and the N atoms, while their phonon dispersion displays that BC$_6$N without BN-bonds has more dynamical stability. Furthermore, all the BC$_6$N structures considered show a large absorption of electromagnetic radiation with polarization parallel to the monolayers in the visible range. Finer detail of the absorption depend on the actual structures of the layers. A higher electronic thermal conductivity and specific heat are seen in BC$_6$N systems caused by hot carrier--assisted charge transport. This opens up a possible optimization for bolometric applications of graphene based material devices.