论文标题

多相气体和辐射湍流混合层的分形性质

Multiphase Gas and the Fractal Nature of Radiative Turbulent Mixing Layers

论文作者

Fielding, Drummond B., Ostriker, Eve C., Bryan, Greg L., Jermyn, Adam S.

论文摘要

银河系和白术气体的常见情况涉及相对于热弥漫性气体运动的冷浓气。开尔文 - 霍尔姆霍尔茨不稳定性会产生湍流混合层并填充中等温度相,这通常会迅速冷却。热量高焓气体损失到冷却的能量使混合层平衡,从而导致冷相的生长和加速。该过程可能在确定星际培养基和圆形培养基相结构中起主要作用,并在银河风和宇宙丝中加速冷气。这些混合层中的冷却发生在薄的瓦楞纸板上,我们认为它的区域具有分形尺寸$ d = 5/2 $,并且厚度调整后可以使热相混合时间与冷却时间相匹配。这些冷却表属性构成了新模型的基础,该模型是如何依赖于$ l $,冷却时间$ t _ {\ rm -cool} $,相对速度$ v _ {\ rm rel} $的相对速度$ v _ {\ rm rel} $和密度对比度$ρ_{\ rm cold} $ phot的系统的基础。预计将在短$ t _ {\ rm cool} $,大$ v _ {\ rm rel} $和大$ρ_{\ rm cold}/ρ_{\ rm hot} $的环境中增强夹带。使用三维流体动力模拟的大型套件,我们证明了该分形冷却层模型准确地捕获了湍流接口的能量和演变,因此可以用作理解与强辐射冷却的多相混合的基础。

A common situation in galactic and intergalactic gas involves cold dense gas in motion relative to hot diffuse gas. Kelvin-Helmholtz instability creates a turbulent mixing layer and populates the intermediate-temperature phase, which often cools rapidly. The energy lost to cooling is balanced by the advection of hot high enthalpy gas into the mixing layer, resulting in growth and acceleration of the cold phase. This process may play a major role in determining the interstellar medium and circumgalactic medium phase structure, and accelerating cold gas in galactic winds and cosmic filaments. Cooling in these mixing layers occurs in a thin corrugated sheet, which we argue has an area with fractal dimension $D=5/2$ and a thickness that adjusts to match the hot phase mixing time to the cooling time. These cooling sheet properties form the basis of a new model for how the cooling rate and hot gas inflow velocity depend on the size $L$, cooling time $t_{\rm cool}$, relative velocity $v_{\rm rel}$, and density contrast $ρ_{\rm cold}/ρ_{\rm hot}$ of the system. Entrainment is expected to be enhanced in environments with short $t_{\rm cool}$, large $v_{\rm rel}$, and large $ρ_{\rm cold}/ρ_{\rm hot}$. Using a large suite of three dimensional hydrodynamic simulations, we demonstrate that this fractal cooling layer model accurately captures the energetics and evolution of turbulent interfaces and can therefore be used as a foundation for understanding multiphase mixing with strong radiative cooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源