论文标题
用SPF2颠倒姿势预测管道:顺序姿势预测的顺序coptcloud预测
Inverting the Pose Forecasting Pipeline with SPF2: Sequential Pointcloud Forecasting for Sequential Pose Forecasting
论文作者
论文摘要
许多自主系统预测未来的方面,以帮助决策。例如,自动驾驶车辆和机器人操纵系统通常会通过首先检测和跟踪对象来预测未来对象。但是,由于姿势预测算法通常需要标记为对象姿势的序列,因此该检测到的缩放量很昂贵,因为姿势预测算法在3D空间中获得了昂贵的对象姿势序列。我们可以在不需要其他标签的情况下扩展性能吗?我们假设是的,并提出反转检测到验证的管道。我们建议首先预测3D传感器数据(例如,具有$ 100 $ k点的点云),然后在预测点云序列上检测/跟踪对象,以获得未来的姿势,即获得未来的poses,即预测,而不是检测,跟踪并预测对象,而是预测3D传感器数据(例如,点云)。这种反演使扩展姿势预测的价格降低,因为传感器数据预测任务不需要标签。这项工作的一部分重点是具有挑战性的第一步 - 顺序的PointCloud预测(SPF),我们还为此提出了一种有效的方法SPFNET。为了比较我们相对于检测到的预测管道的预测管道,我们提出了一个评估程序和两个指标。通过在机器人操作数据集和两个驾驶数据集上的实验,我们表明SPFNET对SPF任务有效,我们的预测 - 然后检测管道优于我们比较的检测预测方法,并且通过添加未保留数据的姿势预测性能提高了姿势预测。
Many autonomous systems forecast aspects of the future in order to aid decision-making. For example, self-driving vehicles and robotic manipulation systems often forecast future object poses by first detecting and tracking objects. However, this detect-then-forecast pipeline is expensive to scale, as pose forecasting algorithms typically require labeled sequences of object poses, which are costly to obtain in 3D space. Can we scale performance without requiring additional labels? We hypothesize yes, and propose inverting the detect-then-forecast pipeline. Instead of detecting, tracking and then forecasting the objects, we propose to first forecast 3D sensor data (e.g., point clouds with $100$k points) and then detect/track objects on the predicted point cloud sequences to obtain future poses, i.e., a forecast-then-detect pipeline. This inversion makes it less expensive to scale pose forecasting, as the sensor data forecasting task requires no labels. Part of this work's focus is on the challenging first step -- Sequential Pointcloud Forecasting (SPF), for which we also propose an effective approach, SPFNet. To compare our forecast-then-detect pipeline relative to the detect-then-forecast pipeline, we propose an evaluation procedure and two metrics. Through experiments on a robotic manipulation dataset and two driving datasets, we show that SPFNet is effective for the SPF task, our forecast-then-detect pipeline outperforms the detect-then-forecast approaches to which we compared, and that pose forecasting performance improves with the addition of unlabeled data.