论文标题
交织的加权旋转蛋白:网络演算分析
Interleaved Weighted Round-Robin: A Network Calculus Analysis
论文作者
论文摘要
加权旋转蛋白(WRR)经常由于简单而用于调度数据包或任务。使用WRR,可以连续提供等于分配给流量的重量的许多数据包,从而导致爆发。交织的加权旋转蛋白(IWRR)是一种减轻这种效果的变体。我们有兴趣在IWRR获得的最差案例延迟上找到界限。为此,我们使用网络演算方法,并为IWRR找到严格的服务曲线。结果是使用函数的伪内获得的。我们表明,严格的服务曲线是最佳可获得的曲线,而从之衍生的延迟边界对于恒定大小的数据包的流量是紧密的(即最差的)。此外,IWRR严格的服务曲线在先前发布的WRR的严格服务曲线中占主导地位。我们提供了一些数值示例,以说明与WRR相比,IWRR引起的最严重案例延迟的减少。
Weighted Round-Robin (WRR) is often used, due to its simplicity, for scheduling packets or tasks. With WRR, a number of packets equal to the weight allocated to a flow can be served consecutively, which leads to a bursty service. Interleaved Weighted Round-Robin (IWRR) is a variant that mitigates this effect. We are interested in finding bounds on worst-case delay obtained with IWRR. To this end, we use a network calculus approach and find a strict service curve for IWRR. The result is obtained using the pseudo-inverse of a function. We show that the strict service curve is the best obtainable one, and that delay bounds derived from it are tight (i.e., worst-case) for flows of packets of constant size. Furthermore, the IWRR strict service curve dominates the strict service curve for WRR that was previously published. We provide some numerical examples to illustrate the reduction in worst-case delays caused by IWRR compared to WRR.