论文标题

深层光子神经网络的兼容学习

Compatible Learning for Deep Photonic Neural Network

论文作者

Xiao, Yong-Liang, Liang, Rongguang, Zhong, Jianxin, Su, Xianyu, You, Zhisheng

论文摘要

目前,使用连贯的光场深入学习的深度学习引起了人们的关注,这是因为可以以固有的并行计算以及低延迟的方式以光速执行光学矩阵操作。光子神经网络具有面向预测的任务的重要潜力。然而,对于相干的光子智能训练,真实价值反向传播的行为有些有用。我们在复杂空间中开发了兼容的学习方案,可以有效地选择非线性激活,具体取决于公开的兼容条件。兼容性表明,复杂空间中的矩阵表示涵盖了其真实对应物,这可以使真实和复杂空间中的单个通道混合为统一模型。提出了带有MACH-ZEHNDER干涉仪和带有光学调制机制的衍射神经网络的相位逻辑XOR门,从兼容学习中实现了智能权重,以证明可用性。兼容的学习为深度光子神经网络打开了一个设想的窗口。

Realization of deep learning with coherent optical field has attracted remarkably attentions presently, which benefits on the fact that optical matrix manipulation can be executed at speed of light with inherent parallel computation as well as low latency. Photonic neural network has a significant potential for prediction-oriented tasks. Yet, real-value Backpropagation behaves somewhat intractably for coherent photonic intelligent training. We develop a compatible learning protocol in complex space, of which nonlinear activation could be selected efficiently depending on the unveiled compatible condition. Compatibility indicates that matrix representation in complex space covers its real counterpart, which could enable a single channel mingled training in real and complex space as a unified model. The phase logical XOR gate with Mach-Zehnder interferometers and diffractive neural network with optical modulation mechanism, implementing intelligent weight learned from compatible learning, are presented to prove the availability. Compatible learning opens an envisaged window for deep photonic neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源