论文标题

通过展开重新加权的$ \ ell_1 $ - $ \ ell_1 $最小化:建筑设计和概括分析,可解释的深层复发性神经网络

Interpretable Deep Recurrent Neural Networks via Unfolding Reweighted $\ell_1$-$\ell_1$ Minimization: Architecture Design and Generalization Analysis

论文作者

Van Luong, Huynh, Joukovsky, Boris, Deligiannis, Nikos

论文摘要

深度展开的方法 - 例如,学到的迭代收缩阈值算法(Lista)---将深度神经网络设计为学习的优化方法的变化。与原始优化方法相比,这些网络已被证明可以实现更快的收敛性和更高的准确性。在这一研究中,本文通过展开重新级别的$ \ ell_1 $ - $ \ ell_1 $最小化算法,开发了一种新颖的深度复发神经网络(重新加权RNN),并将其应用于顺序信号重构的任务。据我们所知,这是第一个探索重新加权最小化的深层发展方法。由于基础重新加权的最小化模型,我们的RNN对于每个层中的每个隐藏单元具有不同的软阈值函数(别名,不同的激活功能)。此外,由于过度参数的权重,它的网络表现力高于现有深层展开的RNN模型。重要的是,我们通过Rademacher复杂性为提出的重新持续RNN模型建立了理论概括误差界。边界表明,所提出的重量重量RNN的参数化确保了良好的概括。我们将提出的重量重量RNN应用于低维测量的视频框架重建问题,即顺序框架重建。移动MNIST数据集的实验结果表明,所提出的深度重新持续RNN明显胜过现有的RNN模型。

Deep unfolding methods---for example, the learned iterative shrinkage thresholding algorithm (LISTA)---design deep neural networks as learned variations of optimization methods. These networks have been shown to achieve faster convergence and higher accuracy than the original optimization methods. In this line of research, this paper develops a novel deep recurrent neural network (coined reweighted-RNN) by the unfolding of a reweighted $\ell_1$-$\ell_1$ minimization algorithm and applies it to the task of sequential signal reconstruction. To the best of our knowledge, this is the first deep unfolding method that explores reweighted minimization. Due to the underlying reweighted minimization model, our RNN has a different soft-thresholding function (alias, different activation functions) for each hidden unit in each layer. Furthermore, it has higher network expressivity than existing deep unfolding RNN models due to the over-parameterizing weights. Importantly, we establish theoretical generalization error bounds for the proposed reweighted-RNN model by means of Rademacher complexity. The bounds reveal that the parameterization of the proposed reweighted-RNN ensures good generalization. We apply the proposed reweighted-RNN to the problem of video frame reconstruction from low-dimensional measurements, that is, sequential frame reconstruction. The experimental results on the moving MNIST dataset demonstrate that the proposed deep reweighted-RNN significantly outperforms existing RNN models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源