论文标题

使用Kerr-Schild笛卡尔形式的度量

Generating odd-dimensional rotating black holes with equal angular momenta by using the Kerr-Schild Cartesian form of metric

论文作者

Tavakoli, Masoumeh, Mirza, Behrouz

论文摘要

Newman-Janis(NJ)方法是从Schwarzschild指标中得出Kerr时空的处方。 BTZ,KERR和五维Myers-Perry(MP)黑洞解决方案已经由NJ方法的不同版本生成。但是,尚不清楚如何通过这种方法生成更高维(d> 6)旋转黑洞的度量。在本文中,我们提出了最简单的算法,用于通过使用度量和四元组的kerr-schild形式生成具有两个任意角动量的五维MP公制。然后,我们提出了NJ方法的另一个新的两步版本,而无需使用四维MP指标的四维MP度量。最后,解释了以相等的角动量的较高奇数旋转黑洞(d> 5)的延伸。

The Newman-Janis (NJ) method is a prescription to derive the Kerr space-time from the Schwarzschild metric. The BTZ, Kerr and five-dimensional Myers-Perry (MP) black hole solutions have already been generated by different versions of the NJ method. However, it is not known how to generate the metric of higher-dimensional (d > 6) rotating black holes by this method. In this paper, we propose the simplest algorithm for generation of the five-dimensional MP metric with two arbitrary angular momenta by using the Kerr-Schild form of the metric and quaternions. Then, we present another new two-step version of the NJ approach without using quaternions that generate the five-dimensional MP metric with equal angular momenta. Finally, the extension of the later procedure is explained for the higher odd-dimensional rotating black holes (d > 5) with equal angular momenta.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源