论文标题
长期光曲线的伽马射线耀斑为3C 454.3
Gamma-Ray Flares in Long Term Light Curve of 3C 454.3
论文作者
论文摘要
3C 454.3经常以耀斑的状态观察到。该来源的长期光曲线已通过Fermi LAT检测器的9年(2008年8月至2017年7月)进行了分析。我们已经确定了五个耀斑和一个静态状态。耀斑具有凸起阶段的峰值的子结构。我们已经估计了耀斑的上升和衰减时间,并与其他类似来源的耀斑相比。在大多数情况下,伽马光谱能量分布的建模显示了对数抛物函数的最佳拟合。我们已经完成了两种耀斑的时间依赖性的Leptonic建模,为此可以同时进行多波长数据。这两个持久的耀斑耀斑-2A和Flare-2D分别持续了95天和133天。我们已经使用了多普勒因子的平均值,电子中的发光度,发射区域的大小以及发射区域的发射区域的磁场。假定发射区域位于我们的单个区域模型中的宽线区域。进行建模时,已经包括了能量损耗(同步加速器,同步加速器自compton,外部康普顿)和电子从发射区域的逃脱。尽管与其他来源相比,用松弛模型建模这些耀斑所需的总射流功率更高,但总是发现它们低于Eddington的亮度3C 454.3。我们还选择了一些耀斑的峰,并表明多普勒因子的时间变化或在短时间内电子中的电子发光度可以解释其光曲线。
3C 454.3 is frequently observed in flaring state. The long term light curve of this source has been analysed with 9 year (August 2008 - July 2017) data from Fermi LAT detector. We have identified five flares and one quiescent state. The flares have sub-structures with many peaks during flaring phase. We have estimated the rise and decay time of the flares and compared with flares of other similar sources. The modeling of gamma ray spectral energy distributions shows in most cases Log parabola function gives the best fit to the data. We have done time dependent leptonic modeling of two of the flares, for which simultaneous multi-wavelength data are available. These two long lasting flares Flare-2A and Flare-2D continued for 95 days and 133 days respectively. We have used the average values of Doppler factor, injected luminosity in electrons, size of the emission region and the magnetic field in the emission region in modeling these flares. The emission region is assumed to be in the broad line region in our single zone model. The energy losses (synchrotron, synchrotron self-Compton, external Compton) and escape of electrons from the emission region have been included while doing the modelling. Although, the total jet powers required to model these flares with leptonic model are higher compared to other sources, they are always found to be lower than the Eddington's luminosity of 3C 454.3. We also select some flaring peaks and show that time variation of the Doppler factor or the injected luminosity in electrons over short time scales can explain their light curves.