论文标题

高阶信息事项:封闭者重新识别的学习关系和拓扑

High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification

论文作者

Wang, Guan'an, Yang, Shuo, Liu, Huanyu, Wang, Zhicheng, Yang, Yang, Wang, Shuliang, Yu, Gang, Zhou, Erjin, Sun, Jian

论文摘要

被遮挡的人重新识别(REID)旨在将封闭的人的图像与整体摄像机的整体形象相匹配。在本文中,我们通过学习高阶关系和拓扑信息来提出一个新颖的框架,以了解判别特征和稳健的对齐。首先,我们使用CNN主链和关键点估计模型来提取语义局部特征。即便如此,被阻塞的图像仍然遭受阻塞和异常值的影响。然后,我们将图像的局部特征视为图的节点,并提出自适应方向图卷积(ADGC)层以传递节点之间的关系信息。提出的ADGC层可以通过动态学习DI截断和链接程度自动抑制无意义特征的消息。当从两个图像中对齐两组局部特征时,我们将其视为图形匹配问题,并提出一个跨刻度嵌入式对齐(CGEA)层,以共同学习并将拓扑信息嵌入本地特征,并直接预测相似性分数。所提出的CGEA层不仅可以充分利用图形匹配学到的对齐方式,而且还可以重新定位敏感的一对一匹配,并与稳健的软匹配。最后,对闭塞,部分和整体REID任务进行的广泛实验显示了我们提出的方法的有效性。具体而言,我们的框架在阻塞数据集上大大优于最先进的地图得分。

Occluded person re-identification (ReID) aims to match occluded person images to holistic ones across dis-joint cameras. In this paper, we propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment. At first, we use a CNN backbone and a key-points estimation model to extract semantic local features. Even so, occluded images still suffer from occlusion and outliers. Then, we view the local features of an image as nodes of a graph and propose an adaptive direction graph convolutional (ADGC)layer to pass relation information between nodes. The proposed ADGC layer can automatically suppress the message-passing of meaningless features by dynamically learning di-rection and degree of linkage. When aligning two groups of local features from two images, we view it as a graph matching problem and propose a cross-graph embedded-alignment (CGEA) layer to jointly learn and embed topology information to local features, and straightly predict similarity score. The proposed CGEA layer not only take full use of alignment learned by graph matching but also re-place sensitive one-to-one matching with a robust soft one. Finally, extensive experiments on occluded, partial, and holistic ReID tasks show the effectiveness of our proposed method. Specifically, our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源