论文标题

动静脉瘘中粘弹性血流的计算研究

A computational study of viscoelastic blood flow in an arteriovenous fistula

论文作者

Vundla, Nkosilathi, Reddy, B. Daya

论文摘要

开发了Oldroyd-B流体流量的有限元分析,以模拟动静脉瘘中的血流。该模型使用标准符合有限元近似值的组合,用于动量方程,以及不连续的Galerkin方法,并带有上风,用于管理额外应力演变的方程。通过将其应用于通道中的圆柱体的基准问题,可以将模型验证为Weissenberg编号的一系列值。主要应用是在动静脉瘘中流动,其几何形状基于患者特定的数据。将Oldroyd-B流体的结果与牛顿流体的液体以及患者特异性速度MRI扫描的数据进行了比较。在WE和Newtonian情况的一系列值中,流线和再循环区域等特征相似。但是,最大壁剪应力对WE具有很强的依赖性,在所有情况下,粘弹性流体的值都高于牛顿情况。

A finite element analysis of flows of an Oldroyd-B fluid is developed, to simulate blood flow in an arteriovenous fistula. The model uses a combination of a standard conforming finite element approximation for the momentum equation, and the discontinuous Galerkin method, with upwinding, for the equation governing the evolution of the extra stress. The model is verified for a range of values of Weissenberg number We by applying it to the benchmark problem of flow past a cylinder in a channel. The main application is to flow in an arteriovenous fistula, the geometry of which is based on patient-specific data. Results for Oldroyd-B fluids are compared with those for a Newtonian fluid as well as with data from patient-specific velocity MRI scans. Features such as streamlines and regions of recirculation are similar across a range of values of We and the Newtonian case. There is however a strong dependence of maximum wall shear stress on We, with values for the viscoelastic fluid in all cases being higher than that for the Newtonian case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源