论文标题

活性粒子在一维力场中的速度和扩散常数

Velocity and diffusion constant of an active particle in a one dimensional force field

论文作者

Doussal, Pierre Le, Majumdar, Satya N., Schehr, Gregory

论文摘要

我们认为在一个尺寸的不均匀力场$ f(x)$中,具有两个速度状态$ \ pm v_0 $的滚子粒子。我们获得了其速度$ v_l $的精确公式,而扩散常数$ d_l $用于任意定期$ f(x)$ l $。它们涉及允许定义全球偏见的“主动潜力”。在不同的参数(例如外部力量$ f $)之类的参数下,动力学经历了从非抗原捕获状态的过渡到各种移动状态,有些在$ v_l $中对$ f $ f $ curve进行了非分析。在存在偏见的情况下,随机景观导致了大型$ l $,以异常的扩散$ x \ sim t^μ$,$μ<1 $或我们计算的有限速度的相位。

We consider a run an tumble particle with two velocity states $\pm v_0$, in an inhomogeneous force field $f(x)$ in one dimension. We obtain exact formulae for its velocity $V_L$ and diffusion constant $D_L$ for arbitrary periodic $f(x)$ of period $L$. They involve the "active potential" which allows to define a global bias. Upon varying parameters, such as an external force $F$, the dynamics undergoes transitions from non-ergodic trapped states, to various moving states, some with non analyticities in the $V_L$ versus $F$ curve. A random landscape in the presence of a bias leads, for large $L$, to anomalous diffusion $x \sim t^μ$, $μ<1$, or to a phase with a finite velocity that we calculate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源