论文标题
内部结构性类别类别:概括Eilenberg-watts Theorem
Internal Coalgebras in Cocomplete Categories: Generalizing the Eilenberg-Watts-Theorem
论文作者
论文摘要
相对于品种$ \ Mathcal {v} $相对于$ \ Mathcal {v} $的左相邻函数类别相当于$ \ Mathcal {v} $中的$ \ Mathcal {c} $。当考虑从$ \ Mathcal {t} _ \ Mathcal {V}^\ Mathsf {op {op {op {op {op {op {是沿着$ \ Mathcal {t} _ \ Mathcal {V}^\ Mathsf {op} $ in $ \ Mathsf {alg} \ Mathcal {t} $的左KAN扩展。由于$ {_ s \ s \ mathit {mod}} $ - calgebras in Variect $ {_ r \ r \ mathit {mod}} $ for Rings $ r $和$ r $和$ s $不过是剩下的$ s $ - ,右$ r $ bimodules,超过eilenberg-watts theorem and the Elect the Elosizations和所有先前的一般一般性。概括和加强了伯格曼在品种中内部结构类别类别的完整性结果,我们还证明,本地可当地的类别$ \ MATHCAL {C} $中的山结构类别是本地呈现的,并且在$ \ Mathcal {c} $上是可及的,并且尤其是完成。此外,我们还表明了弗雷德(Freyd)在多种多样的内部山地的规范结构定义了左伴函子。相应的右伴随的特殊实例出现在各种代数上下文中,并且在$ \ Mathcal {v} $的情况下,是一种交换性的变化,是类别$ \ MATHSF {coalg}(\ Mathcal {t} {t},\ Mathcal {v})$ to $ \ nto $ \ nathcal的coreflector。
The category of internal coalgebras in a cocomplete category $\mathcal{C}$ with respect to a variety $\mathcal{V}$ is equivalent to the category of left adjoint functors from $\mathcal{V}$ into $\mathcal{C}$. This can be seen best when considering such coalgebras as finite coproduct preserving functors from $\mathcal{T}_\mathcal{V}^\mathsf{op}$, the dual of the Lawvere theory of $\mathcal{V}$, into $\mathcal{C}$: coalgebras are restrictions of left adjoints and any such left adjoint is the left Kan extension of a coalgebra along the embedding of $\mathcal{T}_\mathcal{V}^\mathsf{op}$ into $\mathsf{Alg}\mathcal{T}$. Since ${_S\mathit{Mod}}$-coalgebras in the variety ${_R\mathit{Mod}}$ for rings $R$ and $S$ are nothing but left $S$-, right $R$-bimodules, the equivalence above generalizes the Eilenberg-Watts Theorem and all its previous generalizations. Generalizing and strengthening Bergman's completeness result for categories of internal coalgebras in varieties we also prove that the category of coalgebras in a locally presentable category $\mathcal{C}$ is locally presentable and comonadic over $\mathcal{C}$ and, hence, complete in particular. We show, moreover, that Freyd's canonical constructions of internal coalgebras in a variety define left adjoint functors. Special instances of the respective right adjoints appear in various algebraic contexts and, in the case where $\mathcal{V}$ is a commutative variety, are coreflectors from the category $\mathsf{Coalg}(\mathcal{T},\mathcal{V})$ into $\mathcal{V}$.