论文标题

物品和事物的差异处理:一种简单的无监督域适应方法,用于语义分割

Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation

论文作者

Wang, Zhonghao, Yu, Mo, Wei, Yunchao, Feris, Rogerio, Xiong, Jinjun, Hwu, Wen-mei, Huang, Thomas S., Shi, Humphrey

论文摘要

我们通过在这项工作中宽松域(合成数据)和目标域(合成数据)之间的域移动来考虑无监督的域适应性域的适应性问题。最先进的方法证明,执行语义级别的对齐有助于解决域转移问题。基于观察结果,即东西类别通常在不同域的图像中共享相似的外观,而事物(即对象实例)具有更大的差异,我们建议改善语义级别对齐的东西,并为物品区域和事物提供不同的策略:1)用于其他类别,我们为每个类别的特征表示,并从目标域中生成目标域名域的一致性操作,从而对源域进行了校准域来源域域域中的校准; 2)对于事物类别,我们为每个单独实例生成特征表示,并鼓励目标域中的实例与源域中最相似的实例保持一致。通过这种方式,也将认为事物类别中的个体差异可以减轻过度对准。除了提出的方法外,我们还进一步揭示了当前对抗性损失通常在最小化分布差异时不稳定的原因,并表明我们的方法可以通过最大程度地减少源和目标域之间的最相似的东西和实例功能来帮助缓解这个问题。我们在两个无监督的域适应任务中进行了广泛的实验,即GTA5对城市景观和对城市景观的合成,并实现新的最新细分精度。

We consider the problem of unsupervised domain adaptation for semantic segmentation by easing the domain shift between the source domain (synthetic data) and the target domain (real data) in this work. State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue. Based on the observation that stuff categories usually share similar appearances across images of different domains while things (i.e. object instances) have much larger differences, we propose to improve the semantic-level alignment with different strategies for stuff regions and for things: 1) for the stuff categories, we generate feature representation for each class and conduct the alignment operation from the target domain to the source domain; 2) for the thing categories, we generate feature representation for each individual instance and encourage the instance in the target domain to align with the most similar one in the source domain. In this way, the individual differences within thing categories will also be considered to alleviate over-alignment. In addition to our proposed method, we further reveal the reason why the current adversarial loss is often unstable in minimizing the distribution discrepancy and show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains. We conduct extensive experiments in two unsupervised domain adaptation tasks, i.e. GTA5 to Cityscapes and SYNTHIA to Cityscapes, and achieve the new state-of-the-art segmentation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源