论文标题
重新审视有偏见的垫板电位的扩散
Diffusion in a biased washboard potential revisited
论文作者
论文摘要
在热平衡状态下,著名的Sutherland-Einstein关系,即布朗颗粒轨迹的传播是温度越来越多的功能。在这里,我们在有偏见的周期性潜力中仔细检查了不足的布朗运动的扩散,并分析了在有限温度窗口内的温度随温度升高而降低的,其中扩散系数降低。用前所未有的分辨率进行的相应兰格文方程的全面数值模拟使我们能够构建相图,以实现扩散系数的非单调温度依赖性的发生。我们讨论了后一种效应与巨型扩散现象的关系。
The celebrated Sutherland-Einstein relation for systems at thermal equilibrium states that spread of trajectories of Brownian particles is an increasing function of temperature. Here, we scrutinize diffusion of underdamped Brownian motion in a biased periodic potential and analyse regimes in which a diffusion coefficient decreases with increasing temperature within finite temperature window. Comprehensive numerical simulations of the corresponding Langevin equation performed with unprecedented resolution allow us to construct phase diagram for the occurrence of the non-monotonic temperature dependence of the diffusion coefficient. We discuss the relation of the latter effect with the phenomenon of giant diffusion.