论文标题

使用卷积神经网络检测乳腺癌

Breast Cancer Detection Using Convolutional Neural Networks

论文作者

Hadush, Simon, Girmay, Yaecob, Sinamo, Abiot, Hagos, Gebrekirstos

论文摘要

埃塞俄比亚乳腺癌普遍存在,在埃塞俄比亚占女性癌症患者的34%。埃塞俄比亚的诊断技术是手册,被证明是乏味,主观和具有挑战性的。深度学习技术正在彻底改变医学图像分析的领域,因此在这项研究中,我们提出了卷积神经网络(CNN)进行乳房质量检测,以最大程度地减少手动分析的开销。 CNN体系结构设计用于特征提取阶段,并适应了更快的R-CNN的区域建议网络(RPN)和感兴趣的区域(ROI)部分,以用于自动乳腺质量异常检测。我们的模型检测到质量区域,并将其分为乳房X线照片(MG)图像中的良性或恶性异常。对于所提出的模型,从不同医院收集了MG图像。图像通过不同的预处理阶段(例如高斯滤波器,中值过滤器,双边过滤器),并从MG图像的背景中提取乳房区域。该模型在测试数据集上的性能为:检测准确性91.86%,灵敏度为94.67%,AUC-ROC为92.2%。

Breast cancer is prevalent in Ethiopia that accounts 34% among women cancer patients. The diagnosis technique in Ethiopia is manual which was proven to be tedious, subjective, and challenging. Deep learning techniques are revolutionizing the field of medical image analysis and hence in this study, we proposed Convolutional Neural Networks (CNNs) for breast mass detection so as to minimize the overheads of manual analysis. CNN architecture is designed for the feature extraction stage and adapted both the Region Proposal Network (RPN) and Region of Interest (ROI) portion of the faster R-CNN for the automated breast mass abnormality detection. Our model detects mass region and classifies them into benign or malignant abnormality in mammogram(MG) images at once. For the proposed model, MG images were collected from different hospitals, locally.The images were passed through different preprocessing stages such as gaussian filter, median filter, bilateral filters and extracted the region of the breast from the background of the MG image. The performance of the model on test dataset is found to be: detection accuracy 91.86%, sensitivity of 94.67% and AUC-ROC of 92.2%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源