论文标题

nnnlo重力二次旋转相互作用在四分之一的g中

NNNLO gravitational quadratic-in-spin interactions at the quartic order in G

论文作者

Levi, Michèle, McLeod, Andrew J., von Hippel, Matthew

论文摘要

我们首次通过引力旋转对象的有效野外理论(EFT),计算了Newtonian(PN)扩展的N $^3 $ LO引力二次旋转相互作用。该结果以最大旋转紧凑型物体的$ 5 $ PN订单贡献,并在此PN精度下将旋转箱添加到静态扇区。该扇区要求将旋转粒子的EFT扩展到曲率中的线性阶以上,以在曲率中包括在此PN顺序相关的曲率中包括二次操作员。我们利用了世界图片中的图表扩展,并依靠我们最近对\ texttt {eftofpng}代码的升级,我们进一步扩展了该扇区。与自旋轨道扇形类似,我们发现贡献的三环图会产生分歧,对数和先验数。但是,在该领域,所有这些功能都共同从最终结果中取消,其中仅包含有限的理性术语。

We compute the N$^3$LO gravitational quadratic-in-spin interactions at $G^4$ in the post-Newtonian (PN) expansion via the effective field theory (EFT) of gravitating spinning objects for the first time. This result contributes at the $5$PN order for maximally-spinning compact objects, adding the spinning case to the static sector at this PN accuracy. This sector requires extending the EFT of a spinning particle beyond linear order in the curvature to include higher-order operators quadratic in the curvature that are relevant at this PN order. We make use of a diagrammatic expansion in the worldline picture, and rely on our recent upgrade of the \texttt{EFTofPNG} code, which we further extend to handle this sector. Similar to the spin-orbit sector, we find that the contributing three-loop graphs give rise to divergences, logarithms, and transcendental numbers. However, in this sector all of these features conspire to cancel out from the final result, which contains only finite rational terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源