论文标题
PTP:图形神经网络和多样性采样的并行跟踪和预测
PTP: Parallelized Tracking and Prediction with Graph Neural Networks and Diversity Sampling
论文作者
论文摘要
多对象跟踪(MOT)和轨迹预测是现代3D感知系统中的两个关键组件,需要对多代理相互作用进行准确的建模。我们假设在一个框架下统一两个任务以学习代理交互的共享特征表示,这是有益的。此外,我们建议一个并行化的框架来减轻问题,而不是依次执行跟踪和预测,而是可以传播从跟踪到预测的错误。此外,我们的平行轨道搜索框架还包含了两个其他新型计算单元。首先,我们通过引入图神经网络(GNN)来捕获代理相互作用的方式来使用特征交互技术。 GNN能够改善MOT关联的歧视性特征学习,并为轨迹预测提供社会意识的环境。其次,我们使用多样性抽样函数来提高预测轨迹的质量和多样性。对学习的采样函数进行了训练,可以从生成轨迹分布中有效提取各种结果,并有助于避免生成重复的轨迹样品的问题。我们对Kitti和Nuscenes数据集进行了评估,这表明我们具有社会意识的特征学习和多样性采样的方法可在3D MOT和轨迹预测上实现新的最新性能。项目网站是:https://www.xinshuoweng.com/projects/ptp
Multi-object tracking (MOT) and trajectory prediction are two critical components in modern 3D perception systems that require accurate modeling of multi-agent interaction. We hypothesize that it is beneficial to unify both tasks under one framework in order to learn a shared feature representation of agent interaction. Furthermore, instead of performing tracking and prediction sequentially which can propagate errors from tracking to prediction, we propose a parallelized framework to mitigate the issue. Also, our parallel track-forecast framework incorporates two additional novel computational units. First, we use a feature interaction technique by introducing Graph Neural Networks (GNNs) to capture the way in which agents interact with one another. The GNN is able to improve discriminative feature learning for MOT association and provide socially-aware contexts for trajectory prediction. Second, we use a diversity sampling function to improve the quality and diversity of our forecasted trajectories. The learned sampling function is trained to efficiently extract a variety of outcomes from a generative trajectory distribution and helps avoid the problem of generating duplicate trajectory samples. We evaluate on KITTI and nuScenes datasets showing that our method with socially-aware feature learning and diversity sampling achieves new state-of-the-art performance on 3D MOT and trajectory prediction. Project website is: https://www.xinshuoweng.com/projects/PTP