论文标题

来自拓扑顶点的HOPF超级分类

Hopf superpolynomial from topological vertices

论文作者

Mironov, A., Morozov, A.

论文摘要

链接/结不变是带有整数系数的系列,这是一个长期的问题,可以使它们积极并具有共同的解释。构建正面的“超级分类”并不简单,尤其是对于有色不变的人。一个简单的替代方法是对角色扩展的多参数概括,这导致了彩色的“高分析性”。第三个结构涉及解决的结构化构造,这导致了与复合表示相关的另一个不变的家族。我们在HOPF链接的简单情况下重新审视了这个试验性问题,并发现了一种先前被忽视的方法,可以从调度的四点函数中产生积极的彩色超级分析,从而为超级和超级人数之间的新关系铺平了一种方法。

Link/knot invariants are series with integer coefficients, and it is a long-standing problem to get them positive and possessing cohomological interpretation. Constructing positive "superpolynomials" is not straightforward, especially for colored invariants. A simpler alternative is a multi-parametric generalization of the character expansion, which leads to colored "hyperpolynomials". The third construction involves branes on resolved conifolds, which gives rise to still another family of invariants associated with composite representations. We revisit this triality issue in the simple case of the Hopf link and discover a previously overlooked way to produce positive colored superpolynomials from the DIM-governed four-point functions, thus paving a way to a new relation between super- and hyperpolynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源