论文标题

在存在不确定的凸障碍的情况下,可证明安全的轨迹优化

Provably Safe Trajectory Optimization in the Presence of Uncertain Convex Obstacles

论文作者

Dawson, Charles, Jasour, Ashkan, Hofmann, Andreas, Williams, Brian

论文摘要

现实世界的环境本质上是不确定的,在这些环境中,机器人必须能够围绕这种不确定性进行计划。在运动计划的背景下,我们希望在机器人移动时可以保持可接受的安全水平的系统,即使附近障碍的确切位置尚不清楚。在本文中,我们使用顺序凸优化框架解决了这种偶然受限的运动计划问题。为了限制计划运动的碰撞风险,我们采用称为$ε$ -Shadows的几何对象来计算机器人和不确定障碍之间碰撞风险的上限。我们使用这些基于这些$ε$莎的估计值作为非线性轨迹优化问题的约束,然后通过迭代线性化非凸风风险约束来解决。这种顺序优化方法很快找到了完成所需运动的轨迹,同时保持用户指定的碰撞风险限制。我们的方法可以应用于具有任意凸几何形状的机器人和环境。即使在复杂的环境中,它的运行不到一秒钟,并为计划中的轨迹的安全提供了可证明的保证,从而在现实的环境中实现了快速,反应性和安全的机器人运动。

Real-world environments are inherently uncertain, and to operate safely in these environments robots must be able to plan around this uncertainty. In the context of motion planning, we desire systems that can maintain an acceptable level of safety as the robot moves, even when the exact locations of nearby obstacles are not known. In this paper, we solve this chance-constrained motion planning problem using a sequential convex optimization framework. To constrain the risk of collision incurred by planned movements, we employ geometric objects called $ε$-shadows to compute upper bounds on the risk of collision between the robot and uncertain obstacles. We use these $ε$-shadow-based estimates as constraints in a nonlinear trajectory optimization problem, which we then solve by iteratively linearizing the non-convex risk constraints. This sequential optimization approach quickly finds trajectories that accomplish the desired motion while maintaining a user-specified limit on collision risk. Our method can be applied to robots and environments with arbitrary convex geometry; even in complex environments, it runs in less than a second and provides provable guarantees on the safety of planned trajectories, enabling fast, reactive, and safe robot motion in realistic environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源