论文标题
最小二乘随机梯度流的隐式正规化
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
论文作者
论文摘要
当应用于最小二乘回归的基本问题时,我们研究了迷你批次随机梯度下降的隐式正则化。我们利用与随机梯度下降相同的连续时间随机微分方程,我们称之为随机梯度流。我们对随机流动流动流的多余风险在时间$ t $上给出了限制,而ridge回归$λ= 1/t $。可以从显式常数(例如,小批量的大小,步骤尺寸,迭代次数)中计算结合,从而准确揭示了这些数量如何驱动多余的风险。数值示例表明,界限可能很小,表明两个估计器之间存在紧密的关系。我们给出了相似的结果,该结果将随机梯度流和脊的系数相关。这些结果在数据矩阵$ x $的条件下以及整个优化路径(不仅在收敛中)保持不变。
We study the implicit regularization of mini-batch stochastic gradient descent, when applied to the fundamental problem of least squares regression. We leverage a continuous-time stochastic differential equation having the same moments as stochastic gradient descent, which we call stochastic gradient flow. We give a bound on the excess risk of stochastic gradient flow at time $t$, over ridge regression with tuning parameter $λ= 1/t$. The bound may be computed from explicit constants (e.g., the mini-batch size, step size, number of iterations), revealing precisely how these quantities drive the excess risk. Numerical examples show the bound can be small, indicating a tight relationship between the two estimators. We give a similar result relating the coefficients of stochastic gradient flow and ridge. These results hold under no conditions on the data matrix $X$, and across the entire optimization path (not just at convergence).