论文标题

与不确定凸障碍的碰撞概率界限的快速认证

Fast Certification of Collision Probability Bounds with Uncertain Convex Obstacles

论文作者

Dawson, Charles, Hofmann, Andreas, Williams, Brian

论文摘要

要在不确定的环境中进行反应操作,机器人需要能够快速估计其与环境相撞的风险。这种能力对于计划都很重要(以确保计划保持可接受的安全水平)和执行(在风险超过一定阈值时提供实时警告)。现有的估算此风险的方法通常仅限于具有简化几何形状的模型(例如点机器人);其他人处理复杂的几何形状,但对于许多应用来说太慢了。在本文中,我们提出了两种算法,用于快速计算机器人和不确定障碍物之间碰撞风险的上限,通过搜索捕获碰撞概率质量的证书区域,同时避免机器人。这些算法具有强烈的理论保证,即真正的风险不超过估计值,通过凸面分解支持任意几何形状,并在代表性的情况下提供快速查询时间($ <200μ$ s)。我们表征了这些算法在各种复杂性环境中的性能,表明对现有技术至少提高了数量级的加速顺序。

To operate reactively in uncertain environments, robots need to be able to quickly estimate the risk that they will collide with their environment. This ability is important for both planning (to ensure that plans maintain acceptable levels of safety) and execution (to provide real-time warnings when risk exceeds some threshold). Existing methods for estimating this risk are often limited to models with simplified geometry (e.g. point robots); others handle complex geometry but are too slow for many applications. In this paper, we present two algorithms for quickly computing upper bounds on the risk of collision between a robot and uncertain obstacles by searching for certificate regions that capture collision probability mass while avoiding the robot. These algorithms come with strong theoretical guarantees that the true risk does not exceed the estimated value, support arbitrary geometry via convex decomposition, and provide fast query times ($<200μ$s) in representative scenarios. We characterize the performance of these algorithms in environments of varying complexity, demonstrating at least an order of magnitude speedup over existing techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源