论文标题

四维爱因斯坦 - 洛韦洛克重力中的黑洞

Black holes in the four-dimensional Einstein-Lovelock gravity

论文作者

Konoplya, R. A., Zhidenko, A.

论文摘要

最近在[D. Glavan和C. Lin,物理。莱特牧师。 {\ bf 124},081301(2020)],它与纯的爱因斯坦理论不同,即绕过Lovelock定理并避免了Ostrogradsky的不稳定。该理论是在$ d> 4 $尺寸中提出的,其动作由爱因斯坦 - 希尔伯特(Einstein-Hilbert)的术语组成,而高斯 - 邦纳特(Gauss-Bonnet)术语乘以$ 1/(d-4)$。然后,四维理论被定义为限制$ d \至4 $。在这里,我们将这种方法推广到四维爱因斯坦 - 洛沃克理论,并制定了最通用的静态$ 4D $黑洞解决方案,允许$λ$ - term(正或负)和电荷$ q $。由于在一般情况下无法以封闭形式找到度量函数,因此我们公开开发并共享为每组参数构建度量函数的代码。

A $(3+1)$-dimensional Einstein-Gauss-Bonnet theory of gravity has been recently formulated in [D. Glavan and C. Lin, Phys. Rev. Lett. {\bf 124}, 081301 (2020)] which is different from the pure Einstein theory, i.e., bypasses the Lovelock's theorem and avoids Ostrogradsky instability. The theory was formulated in $D > 4$ dimensions and its action consists of the Einstein-Hilbert term with a cosmological constant, while the Gauss-Bonnet term multiplied by a factor $1/(D-4)$. Then, the four-dimensional theory is defined as the limit $D \to 4$. Here we generalize this approach to the four-dimensional Einstein-Lovelock theory and formulate the most general static $4D$ black-hole solution allowing for a $Λ$-term (either positive or negative) and the electric charge $Q$. As metric functions cannot be found in a closed form in the general case, we develop and share publicly the code which constructs the metric functions for every given set of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源