论文标题
电偶极功能的形状确定了Anharmonic振动极性子的亚皮秒动力学
The Shape of the Electric Dipole Function Determines the Sub-Picosecond Dynamics of Anharmonic Vibrational Polaritons
论文作者
论文摘要
我们开发了一种完全量子的机械方法,以描述与强和超级耦合方案中量化的红外腔场相互作用的单个非谐波振动模式的静态特性和动力学。通过比较多种构造时间依赖性的Hartree(MCTDH)模拟,以与Hilbert Space中的问题相同的Morse振荡器进行比较,我们首次将永久性偶极矩的基本作用描述为在振动振动波动式波动袋中的femtsecond动力学中的基本作用。我们表明,根据振动模式坐标$ Q $的电偶极功能$ d_e(q)$的形状,分子可以分为三个一般家庭。对于在平衡处具有极性且具有正偶极功能的正斜率的分子,我们表明,没有振动或空腔激发的初始绝症光型产物状态可以演变为具有大量自助室内室内光子的Polariton波袋,对于超强偶联时的相互作用强度。娱乐内光子振幅的这种构建伴随着有效的$ $ $ $ $ $ 10 \%$的振动模式,与激光诱导的振动激发在自由空间中相当。相比之下,极性也处于平衡但偶极子功能的负斜率,经历等效耦合条件下$缩短$的分子。我们的模型预测是使用现实的$ ab $ - $ - $ - $ initio $势和偶极功能的HF和CO $ _2 $分子在其地面电子状态下进行的。我们最终提出了一种非绝热状态制备方案,以使用纳米级红外天线和紫外线光化学或电子隧道来产生振动偏振子,以实现自发生成的红外量子光的远场检测。
We develop a fully quantum mechanical methodology to describe the static properties and the dynamics of a single anharmonic vibrational mode interacting with a quantized infrared cavity field in the strong and ultrastrong coupling regimes. By comparing multiconfiguration time-dependent Hartree (MCTDH) simulations for a Morse oscillator in a cavity, with an equivalent formulation of the problem in Hilbert space, we describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets. We show that depending on the shape of the electric dipole function $d_e(q)$ along the vibrational mode coordinate $q$, molecules can be classified into three general families. For molecules that are polar and have a positive slope of the dipole function at equilibrium, we show that an initial diabatic light-matter product state without vibrational or cavity excitations can evolve into a polariton wavepacket with a large number of intracavity photons, for interaction strengths at the onset of ultrastrong coupling. This build up of intracavity photon amplitude is accompanied by an effective $lengthening$ of the vibrational mode of nearly $10\%$, comparable with a laser-induced vibrational excitation in free space. In contrast, molecules that are also polar at equilibrium but have a negative slope of the dipole function, experience an effective mode $shortening$ under equivalent coupling conditions. Our model predictions are numerically validated using realistic $ab$-$initio$ potentials and dipole functions for HF and CO$_2$ molecules in their ground electronic states. We finally propose a non-adiabatic state preparation scheme to generate vibrational polaritons using nanoscale infrared antennas and UV-vis photochemistry or electron tunneling, to enable the far-field detection of spontaneously generated infrared quantum light.