论文标题

TTDM:下一个位置预测的旅行时间差模型

TTDM: A Travel Time Difference Model for Next Location Prediction

论文作者

Liu, Qingjie, Zuo, Yixuan, Yu, Xiaohui, Chen, Meng

论文摘要

对于许多基于位置的应用程序,下一个位置预测至关重要,并为商业和政府提供了基本的情报。在现有的研究中,下一个位置预测的一种常见方法是根据条件概率学习具有大量历史轨迹的顺序转变。不幸的是,由于时间和空间的复杂性,这些方法(例如,马尔可夫模型)仅使用正式传递的位置来预测下一个位置,而无需考虑轨迹中的所有经过的位置。在本文中,我们试图通过考虑从查询轨迹中所有通过的位置到候选人下一个位置的旅行时间来提高预测性能。特别是,我们提出了一种称为旅行时间差异模型(TTDM)的新方法,该方法利用了最短的旅行时间与实际旅行时间之间的差异来预测下一个位置。此外,我们通过线性插值将TTDM与Markov模型集成在一起,以产生关节模型,该模型计算到达每个可能的下一个位置并将最高级别返回结果的概率。我们在两个真实数据集上进行了广泛的实验:车辆通道记录(VPR)数据和出租车轨迹数据。实验结果表明,与现有解决方案相比,预测准确性的显着提高。例如,与马尔可夫模型相比,VPR数据的TOP-1准确性提高了40%,出租车数据上提高了15.6%。

Next location prediction is of great importance for many location-based applications and provides essential intelligence to business and governments. In existing studies, a common approach to next location prediction is to learn the sequential transitions with massive historical trajectories based on conditional probability. Unfortunately, due to the time and space complexity, these methods (e.g., Markov models) only use the just passed locations to predict next locations, without considering all the passed locations in the trajectory. In this paper, we seek to enhance the prediction performance by considering the travel time from all the passed locations in the query trajectory to a candidate next location. In particular, we propose a novel method, called Travel Time Difference Model (TTDM), which exploits the difference between the shortest travel time and the actual travel time to predict next locations. Further, we integrate the TTDM with a Markov model via a linear interpolation to yield a joint model, which computes the probability of reaching each possible next location and returns the top-rankings as results. We have conducted extensive experiments on two real datasets: the vehicle passage record (VPR) data and the taxi trajectory data. The experimental results demonstrate significant improvements in prediction accuracy over existing solutions. For example, compared with the Markov model, the top-1 accuracy improves by 40% on the VPR data and by 15.6% on the Taxi data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源