论文标题
非线性参数模型订单降低的局部基础近似方法
A local basis approximation approach for nonlinear parametric model order reduction
论文作者
论文摘要
工程系统的有效条件评估需要将高保真模型与从系统“ AS-IS”状态提取的数据耦合。在启用此任务时,本文实现了非线性结构动力学和材料非线性的特定情况的参数模型订购方案(PMOR)方案。开发了基于物理的参数表示,并纳入了对系统属性和/或激发特征的依赖性。 PMOR公式依赖于使用适用于非线性动态响应的一系列快照的正确正交分解。提出了一种新的多种插值方法,并在降低的系数矩阵映射本地碱基上进行了插值。我们首先在剪切框结构的简单示例中演示了这种方法的性能,其次,在地震兴奋的风力涡轮机塔的更复杂的3D数值案例研究上。参数依赖性与结构特性以及应用激发的时间和光谱特征有关。可以利用开发的参数减少订单模型(PROM)来用于多项任务,包括监视和诊断,控制振动结构以及关键组件的残留寿命估计。
The efficient condition assessment of engineered systems requires the coupling of high fidelity models with data extracted from the state of the system `as-is'. In enabling this task, this paper implements a parametric Model Order Reduction (pMOR) scheme for nonlinear structural dynamics, and the particular case of material nonlinearity. A physics-based parametric representation is developed, incorporating dependencies on system properties and/or excitation characteristics. The pMOR formulation relies on use of a Proper Orthogonal Decomposition applied to a series of snapshots of the nonlinear dynamic response. A new approach to manifold interpolation is proposed, with interpolation taking place on the reduced coefficient matrix mapping local bases to a global one. We demonstrate the performance of this approach firstly on the simple example of a shear-frame structure, and secondly on the more complex 3D numerical case study of an earthquake-excited wind turbine tower. Parametric dependence pertains to structural properties, as well as the temporal and spectral characteristics of the applied excitation. The developed parametric Reduced Order Model (pROM) can be exploited for a number of tasks including monitoring and diagnostics, control of vibrating structures, and residual life estimation of critical components.