论文标题
缓解高精度光度法中的闪烁噪声。 i-噪声结构的表征,对推断的过境参数的影响以及Cheops观察的预测
Mitigating flicker noise in high-precision photometry. I -- Characterization of the noise structure, impact on the inferred transit parameters, and predictions for CHEOPS observations
论文作者
论文摘要
在光度法中,短时间的恒星变异性(“闪烁”),例如由颗粒和振荡引起的,可以达到与地球大小行星的过境深度相当的幅度,并且在典型的传输时间标准上是相关的。当观察到少量传输时,它可以在推断的行星参数上引入系统错误。本文的目的是表征该噪声的统计特性,并量化其对推断过境参数的影响。我们使用了用SOHO/处女座获得的广泛的太阳观测来表征闪烁的噪声。我们使用SDO/HMI数据模拟了整个太阳能盘的逼真的转运,并将其用于获得过境光曲线,我们用来估算过Transit参数上的错误。我们使这些光曲线公开可用。为了将研究扩展到更广泛的参数范围,我们使用开普勒观察得出了闪烁噪声的性质,并研究了它们对恒星参数的依赖性。最后,我们预测了可以使用高精度Cheops和柏拉图观测来提取闪烁噪声的特性的限制恒星表观幅度。恒星颗粒是一种随机的颜色噪声,相对于恒星磁性循环是固定的。随着恒星质量和半径的增加,闪烁的相关时间尺度和振幅都会增加。如果在拟合传输系外行星的参数时未考虑这些相关性,则可能会偏向推断的参数。特别是,对于绕着太阳般的恒星绕的地球行星$ r_p/r_s $,在$ r_p/r_s $上最多的错误。对于F和G恒星,闪烁将显着影响Cheops和Plato观察到的Transit的推断参数。需要制定专用的建模策略,以准确地表征恒星和过渡系外行星。
In photometry, the short-timescale stellar variability ("flicker"), such as that caused by granulation and oscillations, can reach amplitudes comparable to the transit depth of Earth-sized planets and is correlated over the typical transit timescales. It can introduce systematic errors on the inferred planetary parameters when a small number of transits are observed. The objective of this paper is to characterize the statistical properties of this noise and quantify its impact on the inferred transit parameters. We used the extensive solar observations obtained with SoHO/VIRGO to characterize flicker noise. We simulated realistic transits across the solar disk using SDO/HMI data and used these to obtain transit light curves, which we used to estimate the errors made on the transit parameters. We make these light curves publicly available. To extend the study to a wider parameter range, we derived the properties of flicker noise using Kepler observations and studied their dependence on stellar parameters. Finally, we predicted the limiting stellar apparent magnitude for which the properties of the flicker noise can be extracted using high-precision CHEOPS and PLATO observations. Stellar granulation is a stochastic colored noise, and is stationary with respect to the stellar magnetic cycle. Both the flicker correlation timescales and amplitudes increase with the stellar mass and radius. If these correlations are not taken into account when fitting for the parameters of transiting exoplanets, this can bias the inferred parameters. In particular, we find errors of up to 10$\%$ on $R_p/R_s$ for an Earth-sized planet orbiting a Sun-like star. For F and G stars, flicker will significantly affect the inferred parameters of transits observed with CHEOPS and PLATO. Dedicated modeling strategies need to be developed to accurately characterize both the star and the transiting exoplanets.