论文标题

Braitenberg车辆作为发育神经仿真

Braitenberg Vehicles as Developmental Neurosimulation

论文作者

Dvoretskii, Stefan, Gong, Ziyi, Gupta, Ankit, Parent, Jesse, Alicea, Bradly

论文摘要

在行为科学,人工智能和神经生物学领域,大脑和行为连接是一个长期存在的问题。作为人工和生物神经网络模型中的标准,完全成熟的大脑的类似物作为空白板。但是,这并不考虑生物发展和发展学习的现实。我们的目的是建模表现出复杂行为的人造生物的发展。我们介绍了三种替代方法,以证明如何实施发展性体现的代理。由此产生的发展BVS(DBV)将产生从刺激反应到类似于集体运动的群体行为的行为。我们将将这项工作与人工大脑网络领域一起,以及更广泛的主题,例如具体的认知,反馈和出现。我们的观点是通过三个软件实例化来说明的,这些软件实例化证明了BV基因算法混合模型,多感官HEBBIAN学习模型以及多方面方法如何用于接近BV的开发。我们介绍了用例,例如优化的空间认知(车辆基因算法混合模型),连接行为和神经模型(多感觉HEBBIAN学习模型)以及累积分类(多代理方法)。总之,我们考虑发育神经仿真方法的未来应用。

Connecting brain and behavior is a longstanding issue in the areas of behavioral science, artificial intelligence, and neurobiology. As is standard among models of artificial and biological neural networks, an analogue of the fully mature brain is presented as a blank slate. However, this does not consider the realities of biological development and developmental learning. Our purpose is to model the development of an artificial organism that exhibits complex behaviors. We introduce three alternate approaches to demonstrate how developmental embodied agents can be implemented. The resulting developmental BVs (dBVs) will generate behaviors ranging from stimulus responses to group behavior that resembles collective motion. We will situate this work in the domain of artificial brain networks along with broader themes such as embodied cognition, feedback, and emergence. Our perspective is exemplified by three software instantiations that demonstrate how a BV-genetic algorithm hybrid model, multisensory Hebbian learning model, and multi-agent approaches can be used to approach BV development. We introduce use cases such as optimized spatial cognition (vehicle-genetic algorithm hybrid model), hinges connecting behavioral and neural models (multisensory Hebbian learning model), and cumulative classification (multi-agent approaches). In conclusion, we consider future applications of the developmental neurosimulation approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源