论文标题
使用基于转移学习的方法的潜在单线裂变分子的逆设计
Inverse Design of Potential Singlet Fission Molecules using a Transfer Learning Based Approach
论文作者
论文摘要
单线裂变已成为已知的最令人兴奋的现象之一,可以提高不同类型的太阳能电池的效率,并在多种光电应用中找到了用途。然而,可用单裂裂变分子的范围限制在发生单裂裂变的情况下,分子必须满足某些能量条件。使用逆设计的材料搜索的最新进展使得对广泛应用的材料进行了预测,并已成为发现合适材料的最有效方法之一。它在操纵大型数据集,从分子数据集中发现隐藏的信息并生成新结构方面特别有用。但是,我们很少在材料科学中的结构预测问题中遇到大型数据集。在我们的工作中,我们使用基于转移学习的方法提出了可能的单线裂变分子的反设计,在该方法中,我们利用更大的结构相似分子的Chembl数据集将学习的特性传递到Singlet Pission DataSet。
Singlet fission has emerged as one of the most exciting phenomena known to improve the efficiencies of different types of solar cells and has found uses in diverse optoelectronic applications. The range of available singlet fission molecules is, however, limited as to undergo singlet fission, molecules have to satisfy certain energy conditions. Recent advances in material search using inverse design has enabled the prediction of materials for a wide range of applications and has emerged as one of the most efficient methods in the discovery of suitable materials. It is particularly helpful in manipulating large datasets, uncovering hidden information from the molecular dataset and generating new structures. However, we seldom encounter large datasets in structure prediction problems in material science. In our work, we put forward inverse design of possible singlet fission molecules using a transfer learning based approach where we make use of a much larger ChEMBL dataset of structurally similar molecules to transfer the learned characteristics to the singlet fission dataset.