论文标题

奇异的dirichlet $(p,q)$ - 方程

Singular Dirichlet $(p,q)$-equations

论文作者

Papageorgiou, Nikolaos S., Winkert, Patrick

论文摘要

我们考虑了由$(P,Q)$ -Laplacian驱动的非线性差异问题,并且具有单一项和参数$(P-1)$ - 超级线性扰动的综合效果的反应。我们证明了一个分叉型结果,将正面解决方案集的变化描述为参数$λ> 0 $变化。此外,我们证明存在最小的阳性解决方案$ u^*_λ$,并研究地图$λ\ to u^*_λ$的单调性和连续性属性。

We consider a nonlinear Dirichlet problem driven by the $(p,q)$-Laplacian and with a reaction having the combined effects of a singular term and of a parametric $(p-1)$-superlinear perturbation. We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter $λ>0$ varies. Moreover, we prove the existence of a minimal positive solution $u^*_λ$ and study the monotonicity and continuity properties of the map $λ\to u^*_λ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源