论文标题
Xpersona:评估多语言个性化聊天机器人
XPersona: Evaluating Multilingual Personalized Chatbot
论文作者
论文摘要
个性化的对话系统是迈向更好的人机互动的重要一步。现有的个性化对话代理依赖于正确设计的对话数据集,这些数据集大多是单语(例如英语),这极大地限制了对话代理在其他语言中的使用。在本文中,我们提出了角色聊天的多语言扩展,即Xpersona。我们的数据集包括除英语以外的六种不同语言的角色对话,以构建和评估多语言个性化代理。我们使用自动和人类评估的单语言和翻译二线模型对多语言和跨语性训练的基线进行实验,并对它们进行评估。实验结果表明,多语言训练的模型的表现优于Translation-Pipeline,并且与单语模型相当,具有跨多种语言的单个模型。另一方面,最先进的跨语性训练模型与其他模型达到了劣质性能,这表明跨语性的对话建模是一项艰巨的任务。我们希望我们的数据集和基线能够加速多语言对话系统的研究。
Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for building and evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines, and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation-pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems.