论文标题

基于机器学习的减少订单建模,用于在各种形状的虚张声势周围不稳定流动

Machine-learning-based reduced order modeling for unsteady flows around bluff bodies of various shapes

论文作者

Hasegawa, Kazuto, Fukami, Kai, Murata, Takaaki, Fukagata, Koji

论文摘要

我们提出了一种使用机器学习来构建简化订单模型的方法,以实现不稳定的流量。当前的机器学习的还原订单模型(ML-ROM)是通过结合卷积神经网络自动编码器(CNN-AE)和长期短期记忆(LSTM)来构建的,这些记忆是以顺序训练的。首先,使用直接数值模拟(DNS)数据对CNN-AE进行训练,以将高维流数据映射到低维的潜在空间中。然后,利用LSTM来建立通过CNN-AE获得的低维矢量的时间预测系统。作为测试案例,我们考虑在一个悬崖体围绕,其形状是使用三角函数和随机振幅的组合来定义的。当前的ML-ROM经过一组80个悬崖的身体形状训练,并在不同的20个悬崖体形状上进行了测试,这些形状不用于训练,并从相同的随机分布中选择了训练和测试形状。就各种统计数据而言,当前的ML-ROM证实了流场很好地再现。我们还关注两个主要参数的影响:(1)CNN-AE中的潜在矢量大小,以及(2)用于LSTM的映射向量之间的时间步长。目前的结果表明,当正确选择这些参数时,ML-ROM即使在看不见的悬崖体形状也可以很好地工作,这意味着对于当前类型的ML-ROM的巨大潜力将应用于更复杂的流量

We propose a method to construct a reduced order model with machine learning for unsteady flows. The present machine-learned reduced order model (ML-ROM) is constructed by combining a convolutional neural network autoencoder (CNN-AE) and a long short-term memory (LSTM), which are trained in a sequential manner. First, the CNN-AE is trained using direct numerical simulation (DNS) data so as to map the high-dimensional flow data into low-dimensional latent space. Then, the LSTM is utilized to establish a temporal prediction system for the low-dimensionalized vectors obtained by CNN-AE. As a test case, we consider flows around a bluff body whose shape is defined using a combination of trigonometric functions with random amplitudes. The present ML-ROMs are trained on a set of 80 bluff body shapes and tested on a different set of 20 bluff body shapes not used for training, with both training and test shapes chosen from the same random distribution. The flow fields are confirmed to be well reproduced by the present ML-ROM in terms of various statistics. We also focus on the influence of two main parameters: (1) the latent vector size in the CNN-AE, and (2) the time step size between the mapped vectors used for the LSTM. The present results show that the ML-ROM works well even for unseen shapes of bluff bodies when these parameters are properly chosen, which implies great potential for the present type of ML-ROM to be applied to more complex flows

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源