论文标题

KPNET:朝向最小的面部探测器

KPNet: Towards Minimal Face Detector

论文作者

Song, Guanglu, Liu, Yu, Zang, Yuhang, Wang, Xiaogang, Leng, Biao, Yuan, Qingsheng

论文摘要

最小神经网络的小型接受场和能力限制了它​​们的性能,当使用它们是探测器的骨干。在这项工作中,我们发现通用面的外观特征足以判断性,可以从背景中验证微小且浅的神经网络。我们背后的基本障碍是1)面部边界框的模糊定义和2)锚盒或接收场的棘手设计。与大多数自上而下的接头检测和对齐方式不同,提议的KPNet以自下而上的方式检测到小的面部关键点,而不是整个面孔。它首先通过精心设计的细粒度近似值和刻度自适应软弧操作员从低分辨率图像预测面部地标。最后,无论我们如何定义它,都可以从关键点推断出精确的面部边界框。如果没有任何复杂的头部体系结构或精心设计的网络设计,KPNET就可以在通用的面部检测和仅使用$ \ sim1m $ $参数的通用面部检测和对齐基准上实现最先进的精度,该基准在GPU上以1000fps运行,并且在大多数现代前端芯片上易于实时执行。

The small receptive field and capacity of minimal neural networks limit their performance when using them to be the backbone of detectors. In this work, we find that the appearance feature of a generic face is discriminative enough for a tiny and shallow neural network to verify from the background. And the essential barriers behind us are 1) the vague definition of the face bounding box and 2) tricky design of anchor-boxes or receptive field. Unlike most top-down methods for joint face detection and alignment, the proposed KPNet detects small facial keypoints instead of the whole face by in a bottom-up manner. It first predicts the facial landmarks from a low-resolution image via the well-designed fine-grained scale approximation and scale adaptive soft-argmax operator. Finally, the precise face bounding boxes, no matter how we define it, can be inferred from the keypoints. Without any complex head architecture or meticulous network designing, the KPNet achieves state-of-the-art accuracy on generic face detection and alignment benchmarks with only $\sim1M$ parameters, which runs at 1000fps on GPU and is easy to perform real-time on most modern front-end chips.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源