论文标题

差异组对1个manifolds没有异国情调的作用

There are no exotic actions of diffeomorphism groups on 1-manifolds

论文作者

Chen, Lei, Mann, Kathryn

论文摘要

令$ m $为一种歧管,$ n $ a 1维歧管。 Assuming $r \neq \dim(M)+1$, we show that any nontrivial homomorphism $ρ: \text{Diff}^r_c(M)\to \text{Homeo}(N)$ has a standard form: necessarily $M$ is $1$-dimensional, and there are countably many embeddings $ϕ_i: M\to N$ with disjoint images such that the action $ \ $的$ρ$的偶联(通过$ ϕ_i $的产物)与$ \ text {diff}^r_c(m)$在$ m \ times m \ times m \ times ... $上...这解决了松本的猜想。我们还表明,组$ \ text {diff}^r_c(m)$没有可数索引子组。

Let $M$ be a manifold, $N$ a 1-dimensional manifold. Assuming $r \neq \dim(M)+1$, we show that any nontrivial homomorphism $ρ: \text{Diff}^r_c(M)\to \text{Homeo}(N)$ has a standard form: necessarily $M$ is $1$-dimensional, and there are countably many embeddings $ϕ_i: M\to N$ with disjoint images such that the action of $ρ$ is conjugate (via the product of the $ϕ_i$) to the diagonal action of $\text{Diff}^r_c(M)$ on $M \times M \times ...$ on $\bigcup_i ϕ_i(M)$, and trivial elsewhere. This solves a conjecture of Matsumoto. We also show that the groups $\text{Diff}^r_c(M)$ have no countable index subgroups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源