论文标题
在$ \ mathsf {g} $ - 功能字段上的isoshtukas
On $\mathsf{G}$-isoshtukas over function fields
论文作者
论文摘要
在本文中,我们将全局$ \ mathsf {g} $ - shtukas的均等类别进行分类。 \ edline {\ mathbb {f} _q})$其中$ \ mathsf {f} $是两个不变的$ \barκ,\barν$扩展了Kottwitz的先前作品。该结果可以应用于$ \ mathsf {g} $ - shtukas的模量空间的研究点,因此有助于计算它们的共同体学。
In this paper we classify isogeny classes of global $\mathsf{G}$-shtukas over a smooth projective curve $C/\mathbb{F}_q$ (or equivalently $σ$-conjugacy classes in $\mathsf{G}(\mathsf{F} \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q})$ where $\mathsf{F}$ is the field of rational functions of $C$) by two invariants $\barκ,\barν$ extending previous works of Kottwitz. This result can be applied to study points of moduli spaces of $\mathsf{G}$-shtukas and thus is helpful to calculate their cohomology.