论文标题
为宇宙天文纪录器奠定了基础。 ii。恒星种群合成模型系统学和完整协方差矩阵的影响
Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix
论文作者
论文摘要
事实证明,在不同的红移(宇宙天文组织)处被动星系的差异年龄的演变被证明是一种潜在能够以宇宙学的方式约束哈勃参数的方法,但是必须仔细评估系统的不确定性。在本文中,我们计算了由于选择初始质量功能,出色的库和金属性,对系统不确定性的完整协方差矩阵的贡献,探索了各种恒星种群综合模型。通过红移范围0 <z <1.5的模拟,我们发现恒星种群合成模型的选择主导了$ h(z)$的总误差预算,贡献的水平约为4.5%,却丢弃了最不一致的模型。由于选择初始质量功能而产生的贡献<0.5%,而由于恒星库的贡献平均约为6.6%。我们还评估了恒星金属度确定的不确定性的影响,发现恒星金属性的误差约为10%(5%),在$ H(Z)$上传播了9%(4%)的错误。这些结果用于提供这些系统影响对错误预算的综合贡献。对于当前的$ h(z)$测量值,由于金属性和星形形成历史的不确定性,我们表明,使用更现代的恒星图书馆,额外的系统不确定性在5.4%(z = 0.2)和2.3%(z = 1.5)之间。为了实现将系统错误预算置于1%级别以下的目标,我们讨论了获得更高分辨率和信噪比的努力,以及恒星种群合成的建模的改进。
The evolution of differential ages of passive galaxies at different redshifts (cosmic chronometers) has been proved to be a method potentially able to constrain the Hubble parameter in a cosmology-independent way, but the systematic uncertainties must be carefully evaluated. In this paper, we compute the contribution to the full covariance matrix of systematic uncertainties due to the choice of initial mass function, stellar library, and metallicity, exploring a variety of stellar population synthesis models. Through simulations in the redshift range 0<z<1.5 we find that the choice of the stellar population synthesis model dominates the total error budget on $H(z)$, with contributions at a level of ~4.5%, discarding the most discordant model. The contribution due to the choice of initial mass function is <0.5%, while that due to the stellar library is ~6.6% on average. We also assess the impact of an uncertainty in the stellar metallicity determination, finding that an error of ~10% (5%) on the stellar metallicity propagates to a 9% (4%) error on $H(z)$. These results are used to provide the combined contribution of these systematic effects on the error budget. For current $H(z)$ measurements, where the uncertainties due to metallicity and star formation history were already included, we show that, using the more modern stellar libraries, the additional systematic uncertainty is between 5.4% (at z=0.2) and 2.3% (at z=1.5). To reach the goal of keeping the systematic error budget below the 1% level we discuss the efforts needed to obtain higher resolution and signal-to-noise spectra and improvements in the modeling of stellar population synthesis.