论文标题
RSVQA:遥感数据的视觉问题回答
RSVQA: Visual Question Answering for Remote Sensing Data
论文作者
论文摘要
本文介绍了遥感数据(RSVQA)的视觉问题回答的任务。遥感图像包含大量信息,这些信息可用于多种任务,包括土地覆盖分类,对象计数或检测。但是,大多数可用的方法是特定于任务的,因此抑制了对遥感数据中包含的信息的通用且容易访问。结果,准确的遥感产品生成仍然需要专家知识。使用RSVQA,我们提出了一个系统,以从每个用户可以访问的遥感数据中提取信息:我们使用以自然语言提出的问题并使用它们与图像进行交互。使用系统,可以查询图像以获取图像内容或图像中对象之间的关系依赖性特定的高级信息。使用本文介绍的自动方法,我们构建了图像/问题/答案三重态的两个数据集(使用低分辨率数据)。从OpenStreetMap(OSM)查询构建问题和答案所需的信息。数据集可用于训练(使用监督方法时)并评估模型以求解RSVQA任务。我们通过将基于卷积神经网络(CNN)的模型应用于视觉部分和反复发作的神经网络(RNN)来报告结果,从而获得了结果。该模型在两个数据集上进行了训练,在两种情况下都产生了有希望的结果。
This paper introduces the task of visual question answering for remote sensing data (RSVQA). Remote sensing images contain a wealth of information which can be useful for a wide range of tasks including land cover classification, object counting or detection. However, most of the available methodologies are task-specific, thus inhibiting generic and easy access to the information contained in remote sensing data. As a consequence, accurate remote sensing product generation still requires expert knowledge. With RSVQA, we propose a system to extract information from remote sensing data that is accessible to every user: we use questions formulated in natural language and use them to interact with the images. With the system, images can be queried to obtain high level information specific to the image content or relational dependencies between objects visible in the images. Using an automatic method introduced in this article, we built two datasets (using low and high resolution data) of image/question/answer triplets. The information required to build the questions and answers is queried from OpenStreetMap (OSM). The datasets can be used to train (when using supervised methods) and evaluate models to solve the RSVQA task. We report the results obtained by applying a model based on Convolutional Neural Networks (CNNs) for the visual part and on a Recurrent Neural Network (RNN) for the natural language part to this task. The model is trained on the two datasets, yielding promising results in both cases.