论文标题
一般图上的离散常数平均曲率表面
Discrete Constant Mean Curvature Surfaces on General Graphs
论文作者
论文摘要
本文的贡献是双重的。首先,我们概括了离散等温表面的定义。与先前的表面相比,它涵盖了更离散的表面,例如,离散等温度最小和非零的常数平均曲率(简称CMC)的相关家族,在平滑情况下,它们的对应物是等温表面。其次,我们表明,可以通过离散的通用WeierStrass类型表示,可以通过离散的全体形态数据(添加剂有理TODA系统的解决方案)获得离散的等温CMC表面。
The contribution of this paper is twofold. First, we generalize the definition of discrete isothermic surfaces. Compared with the previous ones, it covers more discrete surfaces, e.g., the associated families of discrete isothermic minimal and non-zero constant mean curvature (CMC in short) surfaces, whose counterpart in smooth case are isothermic surfaces. Second, we show that the discrete isothermic CMC surfaces can be obtained by the discrete holomorphic data (a solution of the additive rational Toda system) via the discrete generalized Weierstrass type representation.