论文标题

封闭的Finsler Geodesics通过球形复杂性的存在结果

Existence results for closed Finsler geodesics via spherical complexities

论文作者

Mescher, Stephan

论文摘要

我们采用拓扑方法和lusternik-schnirelmann-type方法来证明在球体和投射空间上的Finsler指标的封闭测量学的存在结果。证明中的主要工具是球形复杂性,这是在作者的早期工作中引入的。使用它们,我们展示了鳍状况度量与全球对称度量的捏合条件和不平等是如何在其长度上存在多个封闭的大地测量学以及上限的存在。

We apply topological methods and a Lusternik-Schnirelmann-type approach to prove existence results for closed geodesics of Finsler metrics on spheres and projective spaces. The main tool in the proofs are spherical complexities, which have been introduced in earlier work of the author. Using them, we show how pinching conditions and inequalities between a Finsler metric and a globally symmetric metric yield the existence of multiple closed geodesics as well as upper bounds on their lengths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源