论文标题

在复杂的Quadric中,将Jacobi操作员通勤在B型的真实超曲面上

Commuting Jacobi operators on Real hypersurfaces of Type B in the complex quadric

论文作者

Lee, Hyunjin, Suh, Young Jin

论文摘要

在本文中,首先,我们研究了普通的雅各比操作员〜$ {\ bar r} _n $与jacobi操作员的结构〜$r_ξ$ for hopf for hopf for hopf for hopf for hopf for hopf confepples〜$ q^m = so_ = so_ so_ {m+2}} r_ξ=r_ξ{\ bar r} _n $。此外,获得了$ \ mathfrak的HOPF真实超曲面的新表征,在复杂的四边形〜$ q^{m} $中,获得了$ - 原理单数正常矢量场。借助此结果,我们可以通过通勤Jacobi运算符在复杂的四边形〜$ q^{m} $中对HOPF真实的超曲面进行显着分类。

In this paper, first, we investigate the commuting property between the normal Jacobi operator~${\bar R}_N$ and the structure Jacobi operator~$R_ξ$ for Hopf real hypersurfaces in the complex quadric~$Q^m = SO_{m+2}/SO_mSO_2$, $m \geq 3$, which is defined by ${\bar R}_N R_ξ = R_ξ{\bar R}_N$. Moreover, a new characterization of Hopf real hypersurfaces with $\mathfrak A$-principal singular normal vector field in the complex quadric~$Q^{m}$ is obtained. By virtue of this result, we can give a remarkable classification of Hopf real hypersurfaces in the complex quadric~$Q^{m}$ with commuting Jacobi operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源