论文标题
Chevalley组中相对和不依赖基本亚组的换向因子
Commutators of relative and unrelative elementary subgroups in Chevalley groups
论文作者
论文摘要
在本文中,这是我们论文的直接续集[10,11,35]与Roozbeh hazrat的关节,我们进一步急剧减少了雪佛兰组相对基本亚组的换向因子的生成集。也就是说,让$φ$是降低的等级$ \ ge 2 $的不可约根系统,让$ r $是一个通勤戒指,让$ a,b $是$ r $的两个理想。我们考虑$ r $ $ $φ$的chevalley $ g(φ,r)的子组。基本UniPOTENTS $x_α(a)$,$α\inφ$,$ a \ in a $ a $ a $ a $ a $,$x_α(a)$,$x_α(a)$x_α(a)$x_α(a)$x_α(a)$x_α(a)$x_α(a)$x_α(a)$ a $ a $ a $ a $的不友存基本亚组$ e(φ,a)$。它在绝对基本亚组$ e(φ,r)$中的正常闭合用$ e(φ,r,a)$表示,称为级别$ a $的相对基本亚组。 [11,35]的主要结果在于为共同换向器子组的经济发电机组构建$ [e(φ,r,a),e(φ,r,b)] $,其中$ a $ a $和$ b $是$ r $的两个理想。事实证明,一个人可以服用$ e(φ,r,ab)$的Vaserstein发电机,加上$y_α(a,b)= [x_α(a),x _ { - α}(α}(b)] $的基本换向器,其中$,$ a \ in $ a \ in $,$ b \ in b $。在这里,我们进一步改善了这些结果,表明实际上只能与{\ IT \/}相对应的长根相关的基本换向因子,而换向器$y__α(a,b)$ beh the Modulo $ e(φ,r,ab)$。我们还讨论了这些结果的进一步变化和应用。
In the present paper, which is a direct sequel of our papers [10,11,35] joint with Roozbeh Hazrat, we achieve a further dramatic reduction of the generating sets for commutators of relative elementary subgroups in Chevalley groups. Namely, let $Φ$ be a reduced irreducible root system of rank $\ge 2$, let $R$ be a commutative ring and let $A,B$ be two ideals of $R$. We consider subgroups of the Chevalley group $G(Φ,R)$ of type $Φ$ over $R$. The unrelative elementary subgroup $E(Φ,A)$ of level $A$ is generated (as a group) by the elementary unipotents $x_α(a)$, $α\inΦ$, $a\in A$, of level $A$. Its normal closure in the absolute elementary subgroup $E(Φ,R)$ is denoted by $E(Φ,R,A)$ and is called the relative elementary subgroup of level $A$. The main results of [11,35] consisted in construction of economic generator sets for the mutual commutator subgroups $[E(Φ,R,A),E(Φ,R,B)]$, where $A$ and $B$ are two ideals of $R$. It turned out that one can take Stein---Tits---Vaserstein generators of $E(Φ,R,AB)$, plus elementary commutators of the form $y_α(a,b)=[x_α(a),x_{-α}(b)]$, where $a\in A$, $b\in B$. Here we improve these results even further, by showing that in fact it suffices to engage only elementary commutators corresponding to {\it one\/} long root, and that modulo $E(Φ,R,AB)$ the commutators $y_α(a,b)$ behave as symbols. We discuss also some further variations and applications of these results.