论文标题
相关的傅立叶变换模型,用于生成合成风速
Phase-randomised Fourier transform model for the generation of synthetic wind speeds
论文作者
论文摘要
风力涡轮机设计和控制的复杂性越来越大,需要对高质量数据。因此,相对有限的测量风数据可以通过计算机生成的替代数据(例如对能源生产和机械负载进行可靠的统计研究。本文提出了一个基于相关的傅立叶变换的数据驱动的,统计模型,用于生成现实的替代时间序列。所提出的模型模拟了一个千古化的伪随机过程,该过程利用迭代的排名重订单程序来产生综合时间序列,该过程具有目标数据的功率谱密度,并同时收敛到目标数据的概率分布,并以任意定义的用户定义的精确性。提出了与两种已建立的数据驱动建模技术的比较,以生成替代风速。在选定模型的测试案例中给出的相同输入条件下,对所提出的模型进行了测试,并根据与目标统计描述符的一致研究对其性能进行了研究。仿真结果表明,所提出的模型可以高保真地重现输入数据集的统计描述符,并能够捕获风速的非平稳昼夜和季节性变化。
The increasing sophistication of wind turbine design and control generates a need for high-quality data. Therefore, the relatively limited set of measured wind data may be extended with computer-generated surrogate data, e.g. to make reliable statistical studies of energy production and mechanical loads. This paper presents a data-driven, statistical model for the generation of realistic surrogate time series that is based on the phase-randomised Fourier transform. The proposed model simulates an ergodic, pseudo-random process that makes use of an iterative rank-reordering procedure to yield synthetic time series that possess the power spectral density of the target data and concurrently converges to the probability distribution of the target data with an arbitrary, user-defined precision. A comparison with two established data-driven modelling techniques for generating surrogate wind speeds is presented. The proposed model is tested under the same input conditions given in the test cases of the selected models, and its performance is investigated in terms of the agreement with the target statistical descriptors. Simulation results show that the proposed model can reproduce with high fidelity the statistical descriptors of the input datasets and is able to capture the nonstationary diurnal and seasonal variations of the wind speed.