论文标题

与许多非特征斜率无限的结

Knots with infinitely many non-characterizing slopes

论文作者

Abe, Tetsuya, Tagami, Keiji

论文摘要

使用Annulus Twist上的技术,我们观察到$ 6_3 $具有无限的许多非特征斜率,这肯定地回答了Baker和Motegi的问题。此外,我们证明了这个结$ 6_2 $,$ 6_3 $,$ 7_6 $,$ 7_7 $,$ 8_1 $,$ 8_3 $,$ 8_4 $,$ 8_6 $,$ 8_7 $,$ 8_9 $,$ 8_9 $,$ 8_ $ 8_ {14} $,$ 8_ {17} $,$ 8_ {20} $和$ 8_ {21} $具有无限的许多非特征性斜率。我们还介绍了微不足道的环曲的概念,并提供了一些可能的应用。最后,我们完全确定哪些结具有最多8次交叉的特殊环形演示。

Using the techniques on annulus twists, we observe that $6_3$ has infinitely many non-characterizing slopes, which affirmatively answers a question by Baker and Motegi. Furthermore, we prove that the knots $6_2$, $6_3$, $7_6$, $7_7$, $8_1$, $8_3$, $8_4$, $8_6$, $8_7$, $8_9$, $8_{10}$, $8_{11}$, $8_{12}$, $8_{13}$, $8_{14}$, $8_{17}$,$8_{20}$ and $8_{21}$ have infinitely many non-characterizing slopes. We also introduce the notion of trivial annulus twists and give some possible applications. Finally, we completely determine which knots have special annulus presentations up to 8-crossings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源