论文标题

骰子晶格模型中的非常规阶段

Unconventional phases in a Haldane model of dice lattice

论文作者

Dey, Bashab, Kapri, Priyadarshini, Pal, Ojasvi, Ghosh, Tarun Kanti

论文摘要

我们提出了类似于石墨烯的骰子晶状体模型的模型,并在紧密结合形式上探索了其拓扑特性。系统的拓扑相边界与石墨烯的Haldane模型相同,但是由于存在扭曲的平坦带,相图比后者更丰富。该系统支持具有“张开”价(传导)频带的相位,并且在传导(Valence)带和扭曲的平坦带之间的间接重叠。频段的重叠将金属特性赋予系统。这些阶段可能会进一步分为拓扑琐碎的和非平凡的阶段,具体取决于“散布”频段的Chern数量。半金属相作为在相图中彼此良好分离的不同点存在,并在低能量下表现出Spin-1 Dirac-Weyl分散体。 Chern界阶段中乐队的Chern号码为$ 0 $和$ \ pm2 $。这使该系统有资格成为量子异常效应的候选,每个边缘有两个手性通道。在某些拓扑琐碎的阶段中,反向传播的边缘状态从平坦带中散发出来。该系统显示在两个山谷中的质量术语不相等的shubnikov de haas振荡中的跳动模式。我们表明,系统的拓扑参数的化学潜力和比率。 SemenOff质量和下一个邻次跳跃幅度可以通过分别从节拍节点和节拍频率之间的振荡数量来实验确定。

We propose a Haldane-like model of dice lattice analogous to graphene and explore its topological properties within the tight-binding formalism. The topological phase boundary of the system is identical to that of Haldane model of graphene but the phase diagram is richer than the latter due to existence of a distorted flat band. The system supports phases which have a "gapped-out" valence (conduction) band and an indirect overlap between the conduction (valence) band and the distorted flat band. The overlap of bands imparts metallic character to the system. These phases may be further divided into topologically trivial and nontrivial ones depending on the Chern number of the "gapped-out" band. The semimetallic phases exist as distinct points that are well separated from each other in the phase diagram and exhibit spin-1 Dirac-Weyl dispersion at low energies. The Chern numbers of the bands in the Chern-insulating phases are $0$ and $\pm2$. This qualifies the system to be candidate for quantum anomalous Hall effect with two chiral channels per edge. Counterpropagating edge states emanate from the flat band in certain topologically trivial phases. The system displays beating pattern in Shubnikov de Haas oscillations for unequal magnitude of mass terms in the two valleys. We show that the chemical potential and ratio of topological parameters of the system viz. Semenoff mass and next-neighbor hopping amplitude may be experimentally determined from the number of oscillations between the beating nodes and the beat frequency, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源