论文标题

一个具有信息融合和用户身份链接的邻里增强的新颖框架

A Novel Framework with Information Fusion and Neighborhood Enhancement for User Identity Linkage

论文作者

Chen, Siyuan, Wang, Jiahai, Du, Xin, Hu, Yanqing

论文摘要

跨社交网络的用户身份链接是跨网络数据挖掘的重要问题。由于网络结构,配置文件和内容信息描述了用户的不同方面,因此学习整合异质信息的有效用户表示至关重要。本文提出了一个新颖的框架,其中包含信息融合和邻域增强(INVUNE)的用户身份链接。信息融合组件采用一组编码器和解码器来融合异质信息,并为初步匹配生成歧视性节点嵌入。然后,这些嵌入被馈送到邻域增强组件,即一种新型的图形神经网络,以产生自适应邻域嵌入,以反映不同候选用户对的社区重叠程度。节点嵌入和邻居嵌入的重要性是为最终预测加权的。在现实世界社交网络数据上评估了所提出的方法。实验结果表明,信息节显着胜过现有的最新方法。

User identity linkage across social networks is an essential problem for cross-network data mining. Since network structure, profile and content information describe different aspects of users, it is critical to learn effective user representations that integrate heterogeneous information. This paper proposes a novel framework with INformation FUsion and Neighborhood Enhancement (INFUNE) for user identity linkage. The information fusion component adopts a group of encoders and decoders to fuse heterogeneous information and generate discriminative node embeddings for preliminary matching. Then, these embeddings are fed to the neighborhood enhancement component, a novel graph neural network, to produce adaptive neighborhood embeddings that reflect the overlapping degree of neighborhoods of varying candidate user pairs. The importance of node embeddings and neighborhood embeddings are weighted for final prediction. The proposed method is evaluated on real-world social network data. The experimental results show that INFUNE significantly outperforms existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源