论文标题

拓扑链链的精确基态和基本激发

Exact ground state and elementary excitations of a topological spin chain

论文作者

Qiao, Yi, Sun, Pei, Cao, Junpeng, Yang, Wen-Li, Shi, Kangjie, Wang, Yupeng

论文摘要

提出了一种新颖的贝特·安萨兹(Bethe Ansatz)方案来计算量子积分系统的物理性能,而无需$ u(1)$对称。例如,检查了抗周期XXZ自旋链,这是嵌入拓扑歧管中的典型相关的多体系统。尽管没有翻译不变性和$ u(1)$对称性,但仍构建了保守的“动量”和“电荷”操作员。基态能量和基本激发精确得出。发现两个固有的分数(一半)零模式考虑了双重变性。基本激发显示与周期链的图片完全不同。该方法可以使用或不带有$ u(1)$对称的其他量子集成模型。

A novel Bethe Ansatz scheme is proposed to calculate physical properties of quantum integrable systems without $U(1)$ symmetry. As an example, the anti-periodic XXZ spin chain, a typical correlated many-body system embedded in a topological manifold, is examined. Conserved "momentum" and "charge" operators are constructed despite the absence of translational invariance and $U(1)$ symmetry. The ground state energy and elementary excitations are derived exactly. It is found that two intrinsic fractional (one half) zero modes accounting for the double degeneracy exist in the eigenstates. The elementary excitations show quite a different picture from that of a periodic chain. This method can be applied to other quantum integrable models either with or without $U(1)$ symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源