论文标题
物理定义的P型MOS硅双量子点中的旋转轨道场
Spin orbit field in a physically defined p type MOS silicon double quantum dot
论文作者
论文摘要
我们在实验和理论上研究了物理定义的P型金属氧化物半导体双量子点中的旋转轨道(SO)场。我们通过Pauli自旋封锁中的双点测量泄漏电流的磁场依赖性。有限的磁场会抬起封锁,当外部和因此平行时,提起效率最低。通过这种方式,我们发现隧道孔的自旋翻转是由于垂直于双点轴的So场引起的,并且几乎完全从量子井平面中完全熄灭。我们使用组对称表示理论通过派生的术语来增强测量值。它预测,如果没有平面电场(一个量子井外壳),那么SO场将主要在平面内,以Rashba和类似的术语为主导。因此,我们解释了所观察到的磁场,该场源自平面成分的电场中。
We experimentally and theoretically investigate the spin orbit (SO) field in a physically defined, p type metal oxide semiconductor double quantum dot in silicon. We measure the magnetic field dependence of the leakage current through the double dot in the Pauli spin blockade. A finite magnetic field lifts the blockade, with the lifting least effective when the external and SO fields are parallel. In this way, we find that the spin flip of a tunneling hole is due to a SO field pointing perpendicular to the double dot axis and almost fully out of the quantum well plane. We augment the measurements by a derivation of SO terms using group symmetric representations theory. It predicts that without in plane electric fields (a quantum well case), the SO field would be mostly within the plane, dominated by a sum of a Rashba and a Dresselhaus like term. We, therefore, interpret the observed SO field as originated in the electric fields with substantial in plane components.