论文标题
当估值不加起来时,寻找公平有效的分配
Finding Fair and Efficient Allocations When Valuations Don't Add Up
论文作者
论文摘要
在本文中,我们为不可分割的商品分配了与{\ em Matroid Rank函数}相对应的代理商的公平有效分配的新结果。这是一个多功能的评估类别,具有多种理想的属性(例如单调性和supdodulinity),自然而然地适合许多现实世界中的域。我们利用这些属性来发挥自己的优势;首先,我们表明,当代理估值是矩形等级功能时,社会上最佳的(即功利主义社会福利最大化)分配,可以实现嫉妒的贵重性,最多可达一项(EF1),并且在计算上是可拖延的。我们还证明,NASH福利最大化和Leximin分配都表现出这种公平/效率的组合,通过证明它们可以通过最大程度地降低实用性最佳最佳结果来实现它们来实现它们。据我们所知,这是第一个未被添加估值所包含的估值功能类别,其确定的分配最大化了NASH福利是EF1。此外,对于基于最大(未加权)两分匹配的这些评估函数的子类,我们表明可以在多项式时间内计算leximin分配。此外,我们探讨了除EF1以外的公平标准以及上述估值类别以外的公平标准的可能扩展。
In this paper, we present new results on the fair and efficient allocation of indivisible goods to agents whose preferences correspond to {\em matroid rank functions}. This is a versatile valuation class with several desirable properties (such as monotonicity and submodularity), which naturally lends itself to a number of real-world domains. We use these properties to our advantage; first, we show that when agent valuations are matroid rank functions, a socially optimal (i.e. utilitarian social welfare-maximizing) allocation that achieves envy-freeness up to one item (EF1) exists and is computationally tractable. We also prove that the Nash welfare-maximizing and the leximin allocations both exhibit this fairness/efficiency combination, by showing that they can be achieved by minimizing any symmetric strictly convex function over utilitarian optimal outcomes. To the best of our knowledge, this is the first valuation function class not subsumed by additive valuations for which it has been established that an allocation maximizing Nash welfare is EF1. Moreover, for a subclass of these valuation functions based on maximum (unweighted) bipartite matching, we show that a leximin allocation can be computed in polynomial time. Additionally, we explore possible extensions of our results to fairness criteria other than EF1 as well as to generalizations of the above valuation classes.